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Current operational approaches to ocean color remote sensing tend to be least accurate in coastal regions with
waters rich in terrigenous material. Semi-analytical models can be used to retrieve the absorption and backscat-
tering properties of dissolved and suspendedmaterials unique to these environments, and subsequently biogeo-
chemical parameters such as total suspended material (TSM) and chlorophyll (Chl). In this study, optical data
collected over several years are used to select and optimize a semi-analytical ocean color algorithm for the dy-
namic and optically complex Long Island Sound estuary. Themost successful algorithm requires a red reflectance
channel between 600 and 650 nm, which is not included inmany current ocean color sensors, but is essential in
highly scattering waters. Regional optimization including the use of a dynamic, spectrally variable f/Q, a value
related to the bidirectional reflectance distribution function (BRDF), results in an approximately five-fold
decrease in retrieval bias in highly backscattering, sediment-laden waters near river outflows. Retrievals of
dissolved and particulate spectral absorption, backscattering, dissolved and detrital absorption coefficients and
total suspended matter obtained from the optimized algorithm agree well with field observations (r2≥0.90).
These parameters are useful for assessing riverine discharge, mixing and residence times of surface waters, as
well as assessing the turbidity and light penetration in this estuary. Estimation of Chl remains challenging
(r2=0.59) due to the stepwise nature of the algorithm and the relatively high proportion of dissolved and
non-algal constituentsmasking phytoplankton absorption (generallyb20% of total absorption at 440 nm).More-
over, diverse phytoplankton assemblages throughout the region create variability between spectral absorption
and chlorophyll and highlight the benefits of increased spectral resolution of ocean color satellites going forward.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction and background

Ocean color imagery collected over the past three decades from nu-
merous orbital platforms has the potential for providing long-term, syn-
optic retrievals of bio-optical properties in the world's oceans (McClain,
2009). However, satellite ocean color imagery is generally underutilized
or improperly interpreted in coastal and estuarine systems largely be-
cause standard approaches for retrieving water column properties
from space cannot accommodate the optical complexity deriving from
riverine delivery of dissolved and sedimentarymaterial. Both the sensors
and algorithms used for routine ocean remote sensing are optimized for
open ocean conditions (Dierssen, 2010). Improving retrievals of water
borne constituents in other environments including near shore and estu-
arine systems requires optimization of algorithms using regional in situ
measurements of optical and biogeochemical water properties.

Historically, many ocean color algorithms have been developed
to retrieve inherent optical properties (IOPs; properties that depend

on the optically significant materials in the water column including
phytoplankton and sediments) and/or biogeochemical properties
(e.g. , chlorophyll-a concentration Chl, total suspended material TSM,
and chromophoric dissolved organic material CDOM) based on direct
empirical relationships with the remote sensing reflectance, Rrs(λ), or
ratios of Rrs at various wavelengths (see Table 1 for definitions). In re-
cent years, many new semi-analytical ocean color algorithms (SAAs)
(Arnone et al., 2006) and other inversion methods such as neural
networks (e.g. Doerffer & Schiller, 2007; Ioannou et al., 2011) have
been developed to include retrievals of IOPs in optically complex coastal
and estuarine systems where global empirical approaches often fail.
In this study, we evaluate remote sensing algorithms in Long Island
Sound (LIS; Fig. 1) with an eye to evaluating the requirements needed
to most accurately retrieve optical and biogeochemical properties in
complex estuarine waters and the limitations of semi-analytical
methods for retrieving phytoplankton properties in a taxonomically
diverse environment dominated by dissolved and non-algal absorption.

1.1. Optical models used in algorithm development

The SAAs studied here rely on the principle that the spectral re-
mote sensing reflectance immediately below the sea surface (rrs(λ))
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can be modeled as a polynomial function of the spectral backscatter-
ing and absorption coefficients (Gordon et al., 1975, 1988; Morel &
Prieur, 1977):

rrs λð Þ ¼ Lu λ;0−ð Þ
Ed λ;0−ð Þ ¼ g0u λð Þ þ g1u λð Þ2; ð1Þ

where

u λð Þ ¼ bb λð Þ
a λð Þ þ bb λð Þ : ð2Þ

Lu and Ed are the spectral upwelling radiance and downwelling
irradiance, respectively, just below the surface (depth=0−). The
below surface rrs(λ) is calculated from above surface Rrs(λ) measure-
ments following Gordon et al. (1988) andMobley (1994) as described

in Lee et al. (1999) Appendix A, and Lee et al. (2002) Section 2.B. The
values g0 and g1 are empirically derived parameters related to the f/Q
term (see Section 1.1.1) often cited in the literature (i.e. rrs(λ)=
g0u(λ)+g1u(λ)2= f/Q*u(λ); f/Q=g0+g1u(λ)) encompassing the di-
rectional nature of the upwelling light field (Q), and f, the relationship
between the magnitude of the irradiance reflectance and the IOPs.
Within the typical remote sensing geometry (see Section 1.1.1), f/Q
is generally assumed to be fairly constant, but in fact, extensive
work has shown how f/Q depends on solar zenith angle, viewing
angle, aerosol optical thickness of the atmosphere, wind speed, and
the magnitudes of the IOPs themselves (Lee et al., 2011; Morel &
Gentili, 1991, 1993; Morel & Gentili, 1996; Morel et al., 2002; Park
& Ruddick, 2005).

The total absorption coefficient can be linearly separated into con-
tributions by seawater (aw) and particulate and dissolved absorption
(apg). The latter can be further separated into absorption contribu-
tions by phytoplankton (aφ), non-algal particulates (ad), and CDOM
(ag) (Eq. 3). The backscattering coefficient comprises contributions
by particles and seawater (backscattering by dissolved material is
considered negligible):

a λð Þ ¼ aφ λð Þ þ ad λð Þ þ ag λð Þ þ aw λð Þ; bb λð Þ ¼ bbp λð Þ þ bbw λð Þ: ð3Þ

Absorption and backscattering by seawater are well established
(Buiteveld et al., 1994; Pope & Fry, 1997; Smith & Baker, 1981), and
the dissolved and non-algal absorption are generally modeled with an
exponentially decaying function with increasing wavelength. Because
of their similarity in spectral shape, absorption by CDOM is difficult to
distinguish from absorption by NAP in retrievals, and ocean color algo-
rithms generally retrieve only their sum, adg(λ) (Arnone et al., 2006) :

adg λð Þ ¼ adg λ0ð Þe–Sdg λ–λ0ð Þ ð4Þ

where Sdg is the spectral slope parameter and λ0 is a reference
wavelength.

The particulate backscattering coefficient bbp(λ) is modeled using
the power-law form commonly found in SAAs (Carder et al., 1999;
Lee et al., 2002; Roesler & Boss, 2002):

bbp λð Þ ¼ bbp λ0ð Þ λ0

λ

� �Y
; ð5Þ

where Y describes the spectral shape, despite concerns that the shape
of backscattering is not entirely independent of absorption, and
anomalous dispersion affects the shape of backscattering throughout
the visible, but most notably near the red absorption peak (Zaneveld
& Kitchen, 1995).

Incorporation of the IOP spectral models (Eqs. (3)–(5)) into the
generic form of the remote sensing reflectance model (Eqs. (1) and
(2)) yields the formulation of the SAA convenient for remote sensing:

rrs λð Þ ¼ ∑
i¼1;2

gi−1

bbp λ0ð Þ λ0

.
λ

� �Y þ bbw λð Þ
aφ λð Þ þ adg λð Þe−Sdg λ−λ0ð Þ þ aw λð Þ þ bbp λ0ð Þ λ0

�
λ

� �Y þ bbw λð Þ

0
B@

1
CA

i

ð6Þ

1.1.1. Variability in the BRDF
A large body of work exists in the literature describing the BRDF

as a function of the IOPs (namely absorption and backscattering coef-
ficients and the volume scattering function, VSF), the solar zenith
angle, sensor viewing angles, wind speed, and aerosol optical thick-
ness (Gordon et al., 1988; Lee et al., 1999; Morel & Gentili, 1991,
1993; Morel & Gentili, 1996; Morel et al., 2002; Preisendorfer, 1961,
1965). In general, they agree that within the remote sensing domain
(i.e. depending on the particular study, solar zenith angleb=~60,
sensor viewing angleb=~40°, aerosol optical thicknessb~0.4, wind

Table 1
Summary of abbreviations and acronyms.

Units Definition

a(λ) m−1 Total absorption coefficient
ag(λ) m−1 CDOM (or gelbstoff) absorption coefficient
ad(λ) m−1 NAP (or detrital) absorption coefficient
ap(λ) m−1 Particulate absorption coefficient
aφ(λ) m−1 Phytoplankton absorption coefficient
aφ*(λ) m2 (mg Chl-a)−1 Chlorophyll-specific phytoplankton

absorption coefficient
aw(λ,T,S) m−1 Pure seawater absorption coefficient
b(λ), bp(λ) m−1 Total, particulate scattering coefficient
bb(λ), bbp(λ) m−1 Total, particulate backscattering coefficient
c(λ), cp(λ) m−1 Total, particulate attenuation coefficient
Ed(λ) W m−2 nm−1 Downwelling irradiance
g0, g1, f/Q,BRDF sr−1 Factors relating rrs to a and bb
Lu(λ,z), Lw(λ) W m−2 nm−1 sr−1 Upwelling, water-leaving radiance
Rrs(λ), rrs(λ) sr−1 Above, below surface remote sensing

reflectance
Sg nm−1 Exponential slope of ag
Sd nm−1 Exponential slope of ad
Y Power-law slope of bbp
ζ Spectral shape parameter for aφ
ξ Spectral shape parameter for adg
λ, λ0 nm Wavelength, reference wavelength
BRDF Bi-directional Reflectance Distribution

Function
CDOM Colored Dissolved Organic Material
Chl mg m−3 Chlorophyll-a concentration
CTR Connecticut River
NAP Non-algal material
PSD particles ml−1 μm−1 Particle size distribution
SAA Semi-analytical ocean color algorithm
TSM mg L−1 Total suspended material

Fig. 1. Long Island Sound is a relatively shallow estuary (bathymetric contours shown
in gray) with strong tidal and sub-tidal exchange at its eastern end. The Connecticut
(CT) River delivers the majority of the fresh water to the estuary, although the Hudson
River impacts the optical properties in western LIS through exchanges at the western
end (Aurin et al., 2010). Stations sampled for algorithm optimization (dots) were
widely distributed across the region.
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speed b~10 ms−1, and assumptions consistent with quasi-single-
scattering theory (Gordon et al., 1975)) f/Q varies by b10%, and has
only a weak dependence on wavelength. The g0 and g1 values
reported in Gordon et al. (1988) and Lee et al. (1999) were derived
empirically after performing numerical radiative transfer models on
simulated data. Without detailed a priori knowledge of the volume
scattering function of the aggregate particles in the water column
(which cannot be measured remotely), g0 and g1 (and therefore f/Q)
cannot be determined analytically. The parameter f/Qwas historically
modeled and parameterized using the Case 1 assumption that volume
scattering and absorption properties could be estimated from Chl.
More recently, modeling studies have refined estimations of f/Q to ex-
tend Eq. (1) to Case 2 waters (Gleason et al., 2012; Hlaing et al., 2012;
Lee et al., 2011; Park & Ruddick, 2005) by incorporating variability in
solar and viewing geometry and allowing estimates of the volume
scattering function (and therefore f/Q) to vary somewhat with changes
in optical water type, but except in the case of Hlaing et al. (2012),
spectral dependence was not included. These corrections to the BRDF
generally reduce error in f/Q for “typical” Case 1 and Case 2 waters,
but they are generally not adaptive to large changes in the particle
phase function nor parameterized for extremely turbid waters such
as those occasionally encountered in LIS. Like earlier approaches, the
model of Hlaing et al. (2012) is based upon a simulated IOP dataset,
but in this case extending to the dynamic range of our field data
(Aurin et al., 2010). Furthermore, it was validated using reflectances
measured in LIS, and it retains spectral dependence which we will
show to be a factor at some highly turbid river plume stations. It differs
only slightly in its formulation, using a third-degree polynomial where
we use a quadratic expression in Eq. (1), but the higher degree terms
have very little effect on algorithm performance in our region as we
will show in Section 4. We therefore investigate the performance of
the Hlaing et al. (2012) BRDF correction approach (hereafter referred
to as the CCNY model or correction) with our field data.

In a recent study by Brando et al. (2012) based on field data
collected in the optically complex waters off Australia as well as
simulated data, the authors demonstrated that the BRDF parameteri-
zation had a significant impact on the ability of a linear matrix inver-
sion (LMI)-type algorithm to make accurate retrievals of IOPs and
Chl, and suggested a future optimization including an adaptive selec-
tion process. They found that use of the values from Gordon et al.
(1988) instead of those from Lee et al. (1999) reduced the number
of possible retrievals to less than half of their data set, while substan-
tially reducing the accuracy of the remaining retrievals. As shown
below, the choice of f/Q was found to be critical for remote sensing
in turbid river plumes.

1.2. Spectral availability of satellite ocean color data

The current suite of global ocean color sensors have multiple spec-
tral bands spanning the visible wavelengths (VIS, 400–700 nm,
Fig. 2). These bands are not spread uniformly across the visible
spectrum, but have been selected to correspond to reflectance charac-
teristics of open ocean waters, particularly those related to phyto-
plankton pigment absorption features. Three bands are generally
found in “blue” (near 412, 443, and 490 nm), 1–2 bands in “green”
(510, 555 nm), and 1–2 channels in the “red” (670, 680 nm). In
fact, a full third of the visible spectrum (555–670 nm) is not routinely
sampled by most current sensors with enough sensitivity for ocean
color remote sensing. Exceptions to this trend include the current
European Space Agency (ESA) MERIS sensor and the planned (2013)
ESA OLCI sensor on Sentinel-3, each of which includes a 620 nm
ocean band. There is also a 645 nm band on the MODIS sensors
(Aqua and Terra), but this band was not designed for ocean color anal-
ysis. It has a very broad spectral response (~50 nm) and a low signal to
noise ratio (SNR) geared for land-based remote sensing; the on-orbit
SNR for the 645 nm band is ~200 (Xiong et al., 2010) versus ~2000

for ocean color bands. This limits the use of this band to only the
most turbid coastal waters where the particulate backscattering coeffi-
cient in the red is high enough to overcome the strong absorption co-
efficient of water, leading to a sufficient water leaving radiance signal
in the 645 nm band (e.g. Miller & McKee, 2004). While such conditions
can be expected in many areas within LIS— particularly during periods
of high river flow— it remains unknown how broadly this band can be
applied across the region.

The history of band selection was based in part on the concept of
a spectral “hinge point” where waters turn from blue to green with
the addition of chlorophyll-a (Gordon & Morel, 1983). The band
near 440 nm coincides with the strongest chlorophyll-a absorption
peak, while absorption by the phycobiliproteins found in cryp-
tomonads and cyanobacteria is centered near the 490 and 510 nm
bands. These longer, blue-green wavebands are also critical to the de-
tection of algae in waters where absorption by chromophoric dissolved
material (CDOM) and non-algal particulates (NAP) is significant and
may obscure chlorophyll absorption features near 443 nm. The
412 nm band is associated with absorption by CDOM and NAP which
decrease exponentially with increasing wavelength. The green band
near 555 nm generally coincides with the peak in spectral reflectance
when chlorophyll concentrations are greater than ~5 mg m−3. When
intense phytoplankton blooms or “red tides” are present at the sea sur-
face, the spectral peak can be shifted towards 590 nm (Dierssen et al.,
2006; Ryan et al., 2005). The red channels are grouped at the far end of
the visible spectrum (Fig. 2) in order to capture the in vivo chlorophyll
absorption peak around 676 nm and the chlorophyll fluorescence sig-
nature at 685 nm (Behrenfeld et al., 2009). However, even the fluores-
cence channels can be largely dominated by scattering or “red-edge
reflectance” during intense algal blooms (Dierssen et al., 2006;
Gilerson et al., 2008).

Band selection has also been based on identifying the minimum
number of bands required to capture the natural variability in the
reflectance signature, but this approach yields different spectral loca-
tions and numbers of wavebands depending on the optical water
types used for optimization (e.g. Lee et al., 2007; Mueller, 1976;
Sathyendranath et al., 1993).

Fig. 2. Spectral locations (approximate band centers in color; available online) of ocean
color bands for the SeaWiFS, MODIS (Aqua and Terra), MERIS, OLCI, S-GLI and VIIRS
(NPP and NPOES) sensors (NRC, 2011) overlaid on the median remote sensing reflec-
tance spectrum (black line) and standard deviation (shaded region) for LIS. With the
exception of the MERIS and OLCI sensors, a notable gap in coverage exists between
555 nm and 670 nm due to a lack of prominent absorption features in this region of
the spectrum. MODIS instruments have a wide-band, low SNR 645 nm band designed
for land use which may be applied to ocean color under certain circumstances (see
text). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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The frequent lack of a band between 555 and 670 nm is in large part
due to the lack of any relevant absorption or fluorescence features in
this part of the spectrum besides water absorption itself. While the ab-
sorption spectrum of seawater is slightly dependent on temperature
and salinity (Sullivan et al., 2006), the spectral shape rises abruptly at
600 nm and increases into the near infrared. Because water absorption
is so much higher than any other natural constituent of seawater (e.g.,
phytoplankton, CDOM, NAP) in this red part of the spectrum, the total ab-
sorption characteristics are known a priori and can be attributed almost
solely to seawater.We saw in theprevious section that remote sensing re-
flectance is roughly proportional to the amount of backscattered light and
inversely proportional to absorbed light. Therefore, knowledgeof the total
absorption in this red portion of the spectrum, rather than unnecessary,
can be extremely useful for remote sensing applications in order to sepa-
rate the spectral influence of constituent backscattering from absorption
on the reflected light (Lee & Carder, 2002).

1.3. Long Island Sound

Prior to the 2010 study byAurin et al. (2010), very little research had
been conducted in LIS focusing on optical characterization and ocean
color remote sensing. A brief summary of this research was presented
by Aurin et al. (2010) who pointed out that prior investigations tended
to be highly localized, did not include a comprehensive suite of optical
data, nor address broader trends across the region. Regional optimiza-
tion of ocean color algorithms typically requires extensive field sam-
pling to characterize variability in the magnitude and spectral quality
of optical properties. For example, Blondeau-Patissier et al. (2009)
showed that for coastal waters sampled in northeastern Australia,
diversity in the IOPs deriving from changes in location and seasonal
forcing (i.e., wet- versus dry-season) lead to multiple optical domains
within the region. Their study exemplified how highly dynamic re-
gions may not be well suited to a single algorithm parameterization
for all sub-regions and/or times of year. Similarly, multiple bio-
optical water types were found in the optically complex waters of
Tokyo Bay and the Santa Barbara Channel (Chang et al., 2007; Feng
et al., 2005). In the latter study, it was shown that the nature of
bio-optical water types was a function of the particle composition
during various times of year, which varied fromminerogenic to phy-
toplankton dominated particles. In contrast, Aurin et al. (2010)
found that in LIS, while some sub-regions were characterized by
phytoplankton-dominated particles and others by minerogenic par-
ticles, and while variability in the magnitudes of IOPs was very high,
the spectral quality of IOPs did not vary significantly from one region
or season to another.

LIS, an exceptionally turbid and productive estuary, is an ideal
region to address remote sensing of optically complex waters.
First, it has high variability in optical and biogeochemical proper-
ties and magnitudes that far surpass those found inmost coastal waters
(e.g., 0.07bap(440)b1.63 m−1, 0.006bbbp(660)b0.124 m−1, and
0.7bChlb80.6 mg m−3) (Aurin et al., 2010). The two largest sources
of fresh water (i.e., the Hudson and Connecticut Rivers; Fig. 1) drive
much of the variability in CDOM and NAP absorption (0.30±0.10 m−1

(median±std) and 0.115±0.107 m−1, respectively at 440 nm) and par-
ticle backscattering (0.019±0.020 m−1 at 660 nm) within LIS, and rep-
resent one extreme optical endmember for the region. Reflectance and
absorption spectra measured throughout the major basins of the estuary
can be classified as either phytoplankton or sediment dominated, similar
to those reported in Morel and Prieur (1977) and elsewhere, although
Aurin et al. (2010) showed (their Fig. 9) that CDOM absorption at
440 nm was typically dominant (70%±13% of apg (440)) compared to
phytoplankton (12%±8%) or NAP (19%±10%) absorption at 440 nm.

Compared to other coastal waters that have multiple bio-optical
water types, ocean color parameters in LIS describing the spectral
shapes of absorption and scattering (e.g., Y, Sg, Sd, and γ; see
Table 1 and Sections 1.1 and 3 for definitions) are not significantly

different across the region, or between seasons (Aurin et al., 2010).
This may be due to the homogenizing influence of vigorous tidal
and sub-tidal flow in the estuary mixing extremely turbid, CDOM-
rich waters found in river plumes with relatively clear waters
entering the estuary from the North Atlantic, or due to relatively
homogeneous dissolved and terrigenous material deriving from
the surrounding watershed. Uniformity in these properties means
that algorithms for remote sensing in LIS should only require a sin-
gle, regional parameterization, thus considerably simplifying and
expediting the retrieval of the surface water properties from re-
mote sensing imagery.

2. Methodology

Four prominent SAAs and one variant are tested in this study for
their accuracy in retrieving IOPs including apg(λ), aφ(λ), adg(λ), and
bb(λ) using metrics found in the IOCCG Report 5 (Arnone et al.,
2006). Based on their relative retrieval performance using in situ
data collected across the region from 2004 to 2011, the top per-
forming SAA is empirically, regionally optimized. Sensitivity to tuning
parameters is identified in order to both improve performance of the
regional algorithm for LIS and to contribute to ocean color algorithm
development going forward. Methods for retrieving biogeochemical
properties including total suspended material (TSM) and chlorophyll
concentration (Chl) from IOP retrievals are also developed. In
selecting algorithms for tuning, we limit our investigation to wave
bands available on the MODIS Aqua and Terra satellite sensors, but
modification for other ocean color sensors (e.g., VIIRS, MERIS or
SeaWiFS) would be trivial.

2.1. Field sampling

Field measurements and discrete sampling for this study comprise
hyperspectral Rrs(λ), spectral and hyperspectral IOPs, Chl, high per-
formance liquid chromatography (HPLC), particle size distribution
(PSD), TSM and ancillary data collected at 158 stations in Long Island
Sound and nearby waters (Fig. 1) during twelve cruises between May
2004 and December 2007 (Aurin et al., 2010). TSM and Rrs(λ) were
collected at an additional 8 ELIS stations in September 2011. The
dissolved absorption coefficient, ag, the total non-water absorption
coefficient (apg=a−aw), the total non-water attenuation coefficient,
cpg, and the particulate backscattering coefficient, bbp, were measured
with a profiling platform. Scattering (bpg) was calculated by sub-
tracting apg from cpg. Spectral whole and 0.2 μm filtered absorption
and attenuation were measured with the ac-9 or ac-S (WET Labs)
instruments. The backscattering coefficient was most frequently mea-
sured with the BBFL2 or BB3 (WET Labs) instruments, although limit-
ed multispectral observations were made using the Hydroscat-6
(Hobilabs). Temperature, conductivity and pressure were measured
using a CTD (SBE25 or SBE49, Seabird). Optical profile data were
binned to 0.5 m. Weighted surface average values of IOPs were esti-
mated following Zaneveld et al. (2005) using the radiative transfer
software Hydrolight (Sequoia Scientific) to model the radiant light
field.

Particle size distribution was measured using a LISST-100X (Se-
quoia Scientific) and processed to particle volume concentration
using the software provided by Sequoia Scientific. Discrete seawater
samples were collected at each station at one or more depths and fil-
tered onto Whatman GFF (nominal pore size 0.7 μm) filters. Frozen
samples were shipped to the University of Maryland's Horn Point
Laboratory for HPLC analysis of pigments including Chl (Hooker
et al., 2005; Van Heukelman & Thomas, 2001). Phytoplankton chemo-
taxonomic groupings were determined through analysis of HPLC pig-
ment data using CHEMTAX v2 software (Wright & Jeffrey, 2006) in
conjunction with pigment inversion ratios determined through field
sampling in LIS by the Connecticut Department of Environmental
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Protection (Li et al., 2004). At selected stations, the particulate, phyto-
plankton, non-algal particulate, and minerogenic absorption coeffi-
cients (ap(λ), aφ(λ), ad(λ), amin(λ)) were measured in a Cary 3E
(Varian Inc.) or U-3010 (Hitachi Inc.) dual-beam spectrophotometer
following NASA protocols (Bowers et al., 1996; Fargion & Mueller,
2000; Werdell & Roesler, 2003). Spectrophotometer data and data
from WET Labs “ac” instruments which were not in mutual agree-
ment (four stations) were eliminated from the dataset. TSM concen-
tration was determined gravimetrically at selected stations during
summertime cruises in 2005, 2006 and 2011 following the proce-
dures outlined in NASA protocols (Hooker et al., 1995).

Hyperspectral (325 nm–1075 nm, 1 nm resolution) surface reflec-
tance measurements were taken above the sea-surface with a Fieldspec
radiometer (Analytical Spectral Devices) and processed to remote sens-
ing reflectance Rrs following Gould et al. (2001) parameterized for the
coastal zone. This approach employs in situmeasurements of absorption
and the spectral shape of scattering andNIR reflectance to improve upon
the skylight correction of above-surface reflectancemeasurements, par-
ticularly in highly turbidwaters. Also, Rrs was estimated using Satlantic's
Hyperpro (350 nm–800 nm, ~3 nm resolution) or HTSRB (350 nm–

800 nm, 1 nm resolution) instruments. Further details regarding data
collection, processing (including corrections and calibration informa-
tion), and quality assurance can be found in Aurin et al. (2010).

Stations were selected for use in algorithm tuning on the basis of the
quality of optical closure, which is the agreement between the light field
modeled by numerical radiative transfer approximation given apg(λ,z),
bb(λ,z), b(λ,z) (where z is depth) and ancillary observations measured
in the field (Hydrolight, (Mobley, 1995)) and the light field measured
in situ. To avoid possible measurement errors in our tuning dataset,
only stations with optimal optical closure (i.e., rank 1, see Eq. 4 in
Aurin et al. (2010))were used in algorithm tuning. Therefore, in addition
to mutually consistent absorption coefficients between the spectropho-
tometer and WET Labs “ac” measurements, we also retain only stations
with mutually consistent Rrs and IOPs. Metrics used to evaluate algo-
rithm performance in retrieving surface properties were the same as

those used in the fifth report of the International Ocean-Colour Coordi-
nating Group , and included the regression coefficient r2, percent differ-
ence (PD), root mean square error (RMSE), and bias. In cases where
data had an approximately log-normal distribution (i.e., for Chl or
waveband independent IOPs, as opposed to TSM and band-specific
IOP retrievals), data were arranged in log space prior to calculating per-
formance metrics (Maritorena et al., 2006). In addition, linear regres-
sion analysis of the measured and modeled IOPs (Type II, (Laws,
1997)) was evaluated for similarity of the regression slope to 1.0 and
the intercept to 0.

3. Algorithm selection and tuning

3.1. Semi-analytical algorithm performance

Optical properties measured in LIS (i.e., apg, aφ, adg, and bb at 412,
440, 488, 510, 532, 555, and 650 nm) were compared with those re-
trieved using five semi-analytical algorithms applied to in situ reflec-
tance data: C99 (Carder et al., 1999, 2006), LMI (Boss & Roesler, 2006;
Roesler & Perry, 1995; Wang et al., 2005), GSM01 (Garver & Siegel,
1997; Maritorena & Siegel, 2006; Maritorena et al., 2002), and QAA
(Lee & Carder, 2004; Lee et al., 2002, 2006, 2010) referenced to
555 nm (QAA555) or 640 nm (QAA640). Fig. 3 shows that for the
principal retrieval parameters apg(λ) and bb(λ) the QAA640 out-
performed others in nearly all metrics. In addition to more accurate
retrievals in LIS prior to regional tuning, the QAA has the advantage
that its stepwise nature simplifies independent parameter tuning
compared with GSM01 or neural network approaches, in which
optimization must be done for all parameters simultaneously. The
QAA640 was therefore selected as the foundational algorithm for
this region.

Briefly, the QAA640 takes advantage of empirical methods for de-
riving total absorption at a reference wavelength (a(λ0), where λ0 is
640 nm) using rrs band ratios. Given rrs(λ0) and a(λ0), the positive
root of the quadratic Eq. (1) is solved to get u(λ0), and Eqs. (1) and

Fig. 3. Algorithm performance metrics (y-axes) prior to optimization for retrieving apg and bb from in situ Rrs(λ) in LIS using five semi-analytical algorithms published in Report 5 of
the International Ocean-Colour Coordinating Group (Arnone et al., 2006).

185D.A. Aurin, H.M. Dierssen / Remote Sensing of Environment 125 (2012) 181–197



Author's personal copy

(2) are inverted to calculate the backscattering coefficient at the
reference wavelength:

bb λ0ð Þ ¼ u λ0ð Þa λ0ð Þ
1−u λ0ð Þ : ð7Þ

The spectral slope of particulate backscattering, Y, is then estimat-
ed empirically using rrs band ratios. Backscattering by seawater at the
reference waveband (bbw(λ0)) is subtracted to get bbp(λ0), which is
then expanded spectrally with Y and Eq. (5) to derive the fully spec-
tral backscattering coefficient, bbp(λ). Next, bbw(λ) is added back to
bbp(λ) yielding the total spectral backscattering coefficient, bb(λ),
which is used to calculate the full spectral absorption coefficient ana-
lytically by inversion of Eq. (2):

a λð Þ ¼ 1−u λð Þð Þbb λð Þ
u λð Þ : ð8Þ

The final steps of the QAA involve separating retrievals of total ab-
sorption into constituent components aφ and adg. The approach of the
QAA to this problem is to first empirically estimate the shape of phy-
toplankton absorption near the 440 nm absorption peak by means of
the ratio ζ (=aφ(410)/aφ(440)) using rrs bands at 440 nm and
555 nm, then to analytically calculate the ratio ξ (=adg(410)/
adg(440)) from Sdg using Eq. (4). The parameters ζ and ξ are therefore
representative of the spectral shape of the phytoplankton and com-
bined detrital and dissolved absorption, respectively, in the blue por-
tion of the spectrum. When combined with the retrieved value for
apg(440), these parameters can be used to analytically solve for
adg(440):

adg 440ð Þ ¼ apg 410ð Þ−ζapg 440ð Þ
ξ−ζ

: ð9Þ

Erroneous negative retrievals of adg(440) are eliminated (Lee
et al., 2002 (none occurred within the rank 1 dataset in this study),
and adg(λ) can be derived from adg(440), Sdg, and Eq. (4). Lastly,
aφ(λ) can be solved by subtracting adg(λ) from apg(λ). Uncertainty
in algorithm retrievals attributable to the QAA (versus uncertainties
in the field measurements) have been estimated here following Lee
et al. (2010).

Separation of absorption into its constituents aφ and adg can be ex-
tremely challenging for a number of reasons. While the spectral char-
acteristics of aφ and adg are distinct from each other, changes to the
reflectance of surface waters deriving from the unique characteristics
of each component are difficult to resolve within a limited set of spec-
tral bands. Furthermore, as a stepwise algorithm, the QAA propagates
error in the retrieval of total absorption, backscattering, ζ, and ε in the
subsequent derivation of phytoplankton, CDOM and NAP absorption
constituents. Lee et al. (2010) demonstrated that error in constituent
component retrievals adg and aφ was predominantly driven by error
in total absorption retrieval, because ζ and ε tended not to vary over
a large range. Since aφ and adg are naturally each of smaller magni-
tude than total absorption, propagated errors are proportionately
higher for aφ and adg. In fact, error propagation for aφ and adg is rather
complex, but the authors showed with a large synthetic dataset that
aφ is expected to have larger error than adg. For instance, uncertainty
in adg(440) when adg(440)=0.1 m−1 varies from 0.02 to 0.09 m−1,
but for aφ(440)=0.1 m−1, uncertainty may vary from 0.02 to
0.70 m−1, meaning errors potentially seven times larger than the sig-
nal. Retrieval errors in aφ are likely to be compounded further in LIS
waters where the phytoplankton absorption is a relatively small frac-
tion (generallyb20%) of apg, i.e. waters in which terrestrial influx of
dissolved and sedimentary material dominate the absorption signa-
ture thereby decreasing the signal to noise ratio in aφ retrievals.

Purely analytical ocean color models do not exist and some form
of empirical assumptions are required in all model formulations. Em-
pirical relationships are dependent on the specific types of material
present in a water body, such as the chemical formulation and age
of CDOM, the color and minerogenic composition of NAP, and the tax-
onomic diversity and physiologic state of phytoplankton. No set of
global empirical parameters is known to apply to all coastal regions.
For a complex estuary like LIS, regional optimization is necessary to
characterize the spectral dependency of the IOPs and their relation-
ship to the reflectance (Rrs) to maximize performance of an algo-
rithm. Regional parameterization of the QAA involves optimization
of the empirically derived components introduced in the previous
section (g0 and g1, Y, a(λ0), ζ, and Sdg) using field measurements of
rrs and the relevant IOP components. Here we evaluate the robustness
of the empirical parameterizations used in the foundational QAA
model for each of these components and suggest improvements for
the region.

4. Results and discussion

4.1. Bidirectionality (f/Q)

Coefficients g0 and g1 (Table 2) were calculated from field mea-
surements of u(λ) and rrs(λ) according to Eq. (1) using least-
squares non-linear optimization (Press et al., 1986). Resulting coeffi-
cients (g0=0.083, g1=0.074) differed somewhat from those of
Gordon et al. (1988) (g0=0.095, g1=0.079) and those suggested
by Lee et al. (1999) for coastal waters (g0=0.084, g1=0.17).

Although rrs modeled using g0, g1 regionally tuned for LIS agreed
well with observations (r2=0.86, RMSE=0.002, pbb0.001, Table 2),
we nevertheless found these coefficients to be somewhat sensitive to
differences in optical water types across LIS. For example, depending
on water type, values of g0 and g1 were not constant spectrally as as-
sumed by most SAAs and BRDF models, and within the regional vari-
ability, g1 was not significantly different from zero (i.e., the quadratic
component in Eq. (1) was negligible across the region). This is also
evidenced by the linearity of the solid fit line in the first row of
Table 2 as compared with the dashed fit from Lee et al. (1999). Fig. 4
and Table 3 show a closer inspection of g0 spectrally (the equivalent
of f/Q assuming g1=0). Although variability is generally small, and
within the ~10%–20% error inherent inmeasurements of backscattering
(Aurin et al., 2010), we found that certain stations in LIS exhibiting
extremely high red reflectances relative to blue (i.e., rrs(650)/
rrs(440)>=1.5) also had more spectral variability in f/Q than others.
Such high red reflectance relative to blue is indicative ofwaterswith ex-
ceptionally high suspended sediment concentrations (i.e., high back-
scattering across the visible spectrum) combined with high Chl, NAP
and/or CDOM (i.e., high absorption in the blue), and were all found at
stations directly influenced by either the Hudson River/East River
plumes in western LIS or the Connecticut River plume in eastern LIS
(Fig. 5). These results are consistent with previous studies which
showed that the spectral dependency of the f/Q ratio is closely tied to
the biogeochemical and optical nature of the suspended particle popu-
lation (Chang et al., 2007; Kostadinov et al., 2007;Morel & Gentili, 1993,
1996; Morel et al., 2002). Models and field observations of the particle
phase function show considerable variability depending on optical
water type, particularly in the backward direction which is most rele-
vant for remote sensing (Berthon et al., 2007; Fournier & Forand,
1994; Petzold, 1972). In 2011, Lee et al. (2011) devised an IOP-based
correction scheme for the angular effects in water-leaving radiance
(Lu above the sea surface, Lw(λ,0+)) which considered multiple
solar and viewing geometries. They found that their approach im-
proved estimates of nadir-viewing Lw in simulated and field data,
but was limited by assumptions regarding the angular shape of
the particle scattering function. Furthermore, while their analysis
showed considerable difference in the angular variability in Lw
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associated with wavelength (e.g. their Fig. 7), spectral dependence
was ultimately not included in their model for f/Q (i.e. the G param-
eters in their Eq. 14). As discussed in Section 1.1.1, most IOP-based
models for correction of f/Q do not incorporate spectral variability.
Furthermore, they have at best only two possible preselected particle
phase functions, are parameterized for what are considered “typical”
waters which often does not include optical water types found in LIS
(Aurin et al., 2010), and they depend on the quasi-single scattering
assumption. For example, Park and Ruddick (2005) parameterize

backscattering and scattering in their model using chlorophyll
concentration, an assumption which would not hold in highly
sediment-laden waters such as river outflows. Backscattering-to-
scattering ratios for estimating the volume scattering function are
limited to 0.010 in Lee et al. (2011) whereas those at the stations
shown in Fig. 5 extend from 0.010 to 0.017. On the other hand, the
CCNY model (Hlaing et al., 2012) tracks spectral variability in the
BRDF, which we have shown in Fig. 4 and Table 3 to be a possible fac-
tor, at least at highly turbid river outflows. We therefore tested the

Table 2
Empirical calibration of the QAALIS. Dots are LIS data, solid lines are tuned models (this study), and dotted lines are models with original coefficients from Li et al. (2004). Starred
equations indicate new models (or models different from QAA) used in this study.

Mathmatical model Data versus model Band [nm] r2 RMSE n

u λð Þ ¼ bb λð Þ
a λð Þ þ bb λð Þ

¼
−g0 þ g0ð Þ2 þ 4g1rrs λð Þ

h i1=2

2g1
;

g0=0.083,g1=0.074

0.86 0.0020 108

“Red” stations (see text)

�rrs λð Þ ¼ f
Q λð Þ � u λð Þ

See Table 3 for coefficients.
Colored lines (online) indicate
wavebands between 412 nm and 650 nm.

412 0.86 0.0007 6
440 0.98 0.0007 6
488 0.96 0.0008 6
510 0.95 0.0011 6
532 0.92 0.0015 6
555 0.89 0.0020 6
650 0.91 0.0016 6

Remaining stations
�rrs λð Þ ¼ f

Q λð Þ � u λð Þ

412 0.58 0.0012 21
440 0.77 0.0011 21
488 0.83 0.0014 21
510 0.80 0.0016 21
532 0.78 0.0018 21
555 0.74 0.0020 21
650 0.90 0.0007 21

a(640)=0.31+0.09ρ10.93;

ρ1 ¼ rrs 645ð Þ
rrs 443ð Þ

0.85 0.022 27

Y=0.255(1−8.6 exp(−9.5ρ2);

ρ2 ¼ rrs 440ð Þ
rrs 555ð Þ

0.21 0.120 20

*Y=2.18ρ3−1.77;

ρ3 ¼ rrs 531ð Þ
rrs 551ð Þ

0.38 0.176 50

ζ ¼ aϕ 410ð Þ
aϕ 440ð Þ

¼ 16:9− 970:6
60:1þ ρ2

;
0.01 0.203 17

�ζ ¼ aϕ 410ð Þ
aϕ 440ð Þ

¼ 1:142−0:151ρ4 þ 1:117Y;

ρ4 ¼ rrs 551ð Þ
rrs 667ð Þ

0.59 0.109 13
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CCNY correction by running our fully tuned algorithm substituting
only their BRDFmodel in place of our empirically derived f/Q, and re-
port the results in Section 4.4.

An important consideration for the highly turbid stations identi-
fied in Figs. 4 and 5 and Table 3 is that the quasi-single scattering
assumption may not be valid. The average single scattering albedo
at these stations is 0.82±0.02 between 412 and 715 nm, and it has
been shown that significant error can arise in estimations of reflection
based on radiative transfer simplifications such as Eq. (1) when the
single scattering albedo (the proportion of attenuation attributable
to scattering) increases beyond ~0.6 (Appendix A in (Gordon et al.,
1975)). It is therefore quite possible that the evidence of variability
in f/Q is the result of multiple scattering effects.

Using the ratio rrs(650)/rrs(440) to discriminate these highly sed-
iment rich and turbid (“red”) waters yielded the spectrally dependent
values for f/Q (i.e., g0) shown in Table 3 and Fig. 4. Spectral variability
in f/Q for these turbid stations is not dramatically different from the
remaining stations at most wavebands (Fig. 4), nevertheless applying
this dynamic switching approach to the algorithm increased esti-
mates of bb(λ) by an average of 17.5% and decreased apg(λ) by
10.8%, thereby considerably improving overall results, as described
in greater detail below.

Without accurate measurements of the VSF, the exact viewing
geometry (i.e. instrument nadir and azimuth angles), and sky and
sea surface conditions, precise numerical modeling of the f/Q at
each station would be subject to numerous assumptions (e.g. regard-
ing the relationship between the backscattering ratio and the phase
function (Fournier & Forand, 1994; Mobley, 1995), as well as realis-
tic boundaries on the viewing geometry, solar irradiance and sea
surface conditions), and was not attempted here. Nevertheless,
since stations were controlled for good optical closure using numer-
ical modeling of the light field in Hydrolight (Aurin et al., 2010;
Mobley, 1995) with field IOPs and conditions, we expect that nu-
merical model estimation of f/Q would agree well with our observa-
tions. Our results suggest that the small variability in f/Q shown
in Fig. 4, because it is only evident at certain turbid stations near
river outflows, derives from differences in the IOPs (i.e. the phase
function or multiple scattering effects) rather than differences in

solar or viewing geometry. Accounting for this variability signifi-
cantly improves model retrievals at these stations (see sensitivity
analysis in Section 4.4).

4.2. Red reference channel

The QAA640 requires an initial empirical estimate of a(640) from
measurements of rrs in the red portion of the spectrum, (r2=0.85,
RMSE=0.022, Table 2). The reference waveband need not be exactly
640 nm, but should be located somewhere on the spectrum between
approximately 600 and 650 nm. To help illustrate why a red reflec-
tance channel in this range is crucial for remote sensing of turbid
water, we consider the individual spectral absorption contributions
for a typical station in LIS (Fig. 6). In the blue-green portion of the
spectrum, absorption is dominated by particulate and dissolved sub-
stances in the water (apg), while at wavelengths between ~600 nm
and ~650 nm, water absorption is strongest. Further in the red, the
strong in vivo chlorophyll-a absorption peak centered near 676 nm
in aφ and apg can reach or even exceed absorption by seawater in
the most productive waters and can often be observed as a trough
in the spectral remote sensing reflectance (e.g. Fig. 8 in Aurin et al.,
2010). In turbid coastal waters or river plumes, particulate and
dissolved absorption at 555 nm is significantly higher than aw. Even
in areas of lower productivity within LIS, high concentrations of
NAP (predominantly sediment) and CDOM typical of the region
cause absorption in the green to be dominated by the particulate
and dissolved components. Near 640 nm, however, water absorption
is stronger than apg, even in the turbid LIS estuary (Fig. 6). Errors in
the initial estimates of apg at this waveband should only represent a
fraction of the total absorption (i.e. as compared with estimates
at 555 nm or 440 nm where apg>>aw, and the variability in total

Fig. 6. Constituent absorption spectra for a typical station in LIS illustrating a predom-
inance in particulate and dissolved absorption at 440 nm and 555 nm compared with
640 nm.

Fig. 5. Locations of stations with extremely high red reflectances as well as a spectrally
varying f/Q.

Fig. 4. f/Q, the factor relating reflectances to IOPs in LIS was found to be more spectrally
dependent at stations in LIS with higher red-to-blue reflectance ratios indicative of
high suspended sediment concentrations (see also Table 3, Fig. 5).

Table 3
Spectral f/Q in LIS for highly turbid “red”waters (ρ>=1.5), remaining waters (ρ b1.5);
the optimized values for g0 in the QAALIS algorithm.

Wavelength [nm]

412 440 488 510 532 555 650

ρ*b1.5 0.12599 0.11507 0.11432 0.11484 0.11443 0.11433 0.10305
ρ>=1.5 0.07913 0.09275 0.10684 0.10912 0.11148 0.11268 0.09772

*ρ=Rrs(650)/Rrs(440).
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absorption due to the addition of apg has been estimated at 2- and 20-
fold, respectively Lee et al. (2002)), thereby reducing error in the in-
version of the backscattering coefficient at the reference wavelength.
In extremely turbid waters, however, CDOM and NAP may dominate
absorption at 640 nm and new model formulations may consider
using a reference wavelength in the near infrared (channels com-
monly used for image atmospheric correction). A recent study in
the highly turbid waters of Taihu Lake in China found that shifting
the reference wavelength from 640 nm into the near infrared was in-
strumental in improving retrievals of the absorption coefficient (Le et
al., 2009).

4.3. Spectral shape parameters Y, ζ, and ξ

For practical reasons, Y, the spectral slope of in situ measurements
of bbp, was estimated in LIS from the spectral slope of bp as described
in Aurin et al. (2010). This approach assumed a spectrally inde-
pendent backscattering ratio and was supported by Mie theory
(Ulloa et al., 1994) and field data (Whitmire et al., 2007), although
studies have challenged this assumption for natural waters (McKee
& Cunningham, 2005; Snyder et al., 2008), and more extensive

multi-spectral measurements of bbp in LIS are clearly warranted. Y
has been shown to be related to the particle size distribution, where-
by polydispersions of larger particles such as those found in coastal
and estuarine waters tend to lead to a weaker spectral dependence
in bbp (Babin et al., 2003; Morel & Ahn, 1990), although empirical
corroboration remains limited. For retrieving Y from rrs (i.e., step 4
in Table 2 of Lee et al. (2002)), we found that a simple linear fit to
rrs(531)/rrs(555) (Table 2, this study) proved more robust in LIS
(r2=0.38, RMSE=0.176) than the original exponential model (r2=
0.21, RMSE=0.120, p=0.017, n=20) tuned to LIS. Retrieving Y
from rrs is especially challenging in near shore waters where spectral
dependence is expected to be fairly weak, and this is reflected in the
weak correlations between the two parameters. However, the algo-
rithm proved overall to be relatively insensitive to empirical esti-
mates of Y (see Section 4.4).

Within the somewhat limited aφ data availability in LIS, ζ, the
parameter describing the spectral shape of aφ in the blue (see
Section 3.1), did not correlate with band ratios suggested in Lee
et al. (2002). The best relationship to retrieve ζ involved multiple
regression with both an rrs band ratio (rrs(551)/rrs(667)) and our pre-
viously retrieved value for Y (Table 2, r2=0.59, RMSE=0.109,

Fig. 7. Sensitivity of model performance (z-axes) as a function of empirical tuning parameters (x-axes) and wavelength of retrieval (y-axes). Metrics for all tuning parameters com-
bined is shown at the end of the x-axes, and for all wavelengths combined at the end of the y-axes.
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pbb0.01, n=13). The difficulty in finding a more robust relationship
suggests that deriving the shape of phytoplankton absorption
(i.e. ζ=aφ(410)/aφ(440)) from ocean color is very challenging in
waters like those in LIS, which tend to have stronger absorption in
the blue from CDOM and NAP than from phytoplankton. In fact, we
found that among rank 1 stations, aφ(440)/apg(440) varied between
just 2% and 24%. The choice to incorporate Y in this component of
the model follows from the consideration that together with the spec-
tral characteristics of adg and aφ, Y also has an effect on the slope of rrs
between 551 nm and 667 nm. We also found that a small empirical
adjustment to adg(440) prior to spectral extrapolation (adg(440)=
0.33(adg(440)+0.4)) moderately improved waveband-specific adg
retrievals (see below). To solve for ξ, which describes the spectral
shape of adg in the blue (ξ=exp[Sdg(440–410)]), we used the region-
al average for Sdg=0.0134±0.0013, which was shown not to deviate
significantly across the region or between seasons in LIS (Aurin et al.,
2010).

4.4. Sensitivity analysis of model parameters

A sensitivity analysis was performed to evaluate the importance of
each empirical tuning parameter by comparing retrievals of the prin-
cipal parameters (apg and bb) with field data. This approach identified
the empirical components of the algorithm with the most beneficial
impact on model performance. Each element was tuned indepen-
dently, and the improvement to retrievals was evaluated as a function
of each parametric component, as well as the wavelength retrieved
(Fig. 7). All tuned empirical elements were then combined to assess
overall model performance. A caveat to this analysis is that ideally al-
gorithm validation would employ an independent dataset from that
used in the tuning models to test algorithm performance and sensi-
tivity, but owing to the relatively small number of stations remaining
after quality selection (particularly for aφ and ad data), separation
into “tuning” and “validation” sets was impractical.

As described in Lee et al. (2002) the empirical elements of the QAA
have secondary order of importance compared with the analytical
portions of the algorithm (i.e., inversion of Eq. 1). Sensitivity of the al-
gorithm to tuning parameters was evaluated for wavebands centered
at 412, 440, 488, 510, 532, 555 and 650 nm. At longer wavelengths,
good retrievals are generally precluded owing to the dominance of
seawater in the total absorption spectrum which obscures the signa-
ture of the suspended and dissolved constituents in the sea-surface
reflectance. Results for all wavelengths combined are included as
the last parameter of the ordinate axes in Fig. 7.

Tuning of the empirical parameters generally produced only
small improvement in overall correlations between observed and
modeled apg and bb. Tuning the g0 g1 parameters (i.e. using f/Q and
a water-type switching algorithm as described above) shows the
most dramatic improvement for retrieving apg and bb, e.g. lowering
PD from 9.2% to 2.2% for retrievals of apg(440), and from 4.9% to
1.0% for bb(440), while bias is reduced from 0.05 m−1 to 0.01 m−1

and from 0.0014 m−1 to 0.0003 m−1 for apg(440) and bb(440), re-
spectively. Tuning a(640) is also important for apg, e.g. reducing PD
from 9.2% to 5.4% and bias from 0.05 to 0.03 m−1 for apg(440). For
apg, tuning both f/Q and a(640) has a strong synergistic effect, and
reduced PD from 9.2% to 0.6% and bias from 0.05 to 0.003 m−1 for
apg(440). Tuning Y is important for bb, e.g. reducing PD from 4.9% to
1.2% and bias from 0.0014 to 0.0004 m−1 for bb(440).

The r2 for apg retrievals shows a marked sensitivity to wavelength
of the retrievals, with peak r2 occurring at 555 nm and declining
gradually toward the blue, and steeply at 650 nm. Deterioration of
retrieval quality in the red is almost paradoxically a result of the dom-
inance of water absorption at longer wavelengths obscuring the ab-
sorption signature of suspended and dissolved constituents in the
reflectance. Deterioration in the blue is likely due to errors in spectral
extrapolation of retrievals from the reference wavelength (640 nm)
by means of the backscattering shape parameter, Y, with no a priori
knowledge of the spectral shape of apg.

Fig. 8. Performance of the model for retrieval of bb(λ), apg(λ), adg(λ), and aφ(λ). Colors of dots (available online) represent appropriate wavelengths 412 nm–650 nm. Uncertainties
(gray lines) are calculated following Lee et al. (2010), and typically overlapped the 1:1 line (dashed line). Retrievals fell within or overlapped the 95% confidence intervals (dotted
lines) shown above and below the model fit (solid line).
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Performance metrics and retrieval uncertainty of the regionally
optimized model for bb, apg, aφ, and adg are shown in Fig. 8 for all
wavelengths combined. Retrievals of bb, apg, and adg correlated very
well with field measurements (r2=0.91, 0.95, and 0.90, respectively)
with low bias and RMSE, and low PD. Retrieval uncertainty for all
parameters fell within or overlapped the 95% prediction confidence
interval (dotted lines Fig. 8), and generally overlapped the 1:1
(dashed) line, although some bias in the bb retrievals at lowmagnitudes
was apparent. In general, increased uncertainty and error at very low
magnitude retrievals of bb and apg (i.e., less than ~0.010 m−1 bb or
~0.10 m−1 apg) is apparent; likely a result of the fact that the QAALIS
is optimized for the highly scattering (bb(440)=0.018±0.029 m−1

for the optimization data set) and absorbing (apg(440)=0.575±
0.379 m−1) waters of LIS. The same phenomenon is also pronounced
in retrievals of adg and aφ, which are of considerably lower magnitude
than apg relative to error and uncertainty.

As expected (see Section 3.2 and Lee et al. (2010)), second tier re-
trievals adg and aφ are more susceptible to error that apg and bb. Nev-
ertheless, adg and aφ retrievals with the QAALIS show significant
improvement over the non-optimized QAA640 algorithm (Table 4
and Fig. 9). Improvements over the QAA555 and other SAAs evaluated
here are considerably higher (e.g. see Fig. 3).

The fully tuned inversion algorithm was also evaluated after
changing only the f/Q correction factor to the CCNY third degree poly-
nomial model interpolated to our wavebands. In general, retrievals
using the CCNY correction performed well with coefficients of deter-
mination comparable to the untuned QAA640 (e.g. r2=0.90, 0.94,
0.90 for bbt, apg, and adg, respectively) and only a small increase
in error for bbt, apg, adg (e.g. PD=8.4%, 9.1%, 17.8%, and bias=
0.002 m−1, −0.030 m−1, −0.030 m−1, respectively) compared with
those of the untuned QAA640 (Table 4). For aφ, PD and bias actually
decreased to 27.2% and 0.011 m−1, respectively — slightly lower even
than the QAALIS — but the r2 decreased from 0.70 to 0.61.

Aggregate statistics can be misleading for parameters that have
strong wavelength dependence (e.g., adg, Fig. 8), so the model is also
evaluated at each wavelength individually. Retrieved bb, apg, adg, and
aφ are compared to measured parameters at individual wavebands
(Figs. 10–13). Retrievals of backscattering are excellent across all
wavebands (Fig. 10). Bulk absorption (apg) retrievals are best between
488 nm and 555 nm, and exhibited a moderate negative bias at
650 nm, where it also has the largest uncertainties (Fig. 11). Uncer-
tainties and error in aφ and adg tend to be much higher, as expected
for the reasons outlined above. While the algorithm appears to capture
the overallmagnitude of adgquitewell across allwavebands (Fig. 8), it is

Fig. 9. Improvements in algorithm performance for retrieving apg, adg, aφ, and bb across all wavebands deriving from regional optimization.

Table 4
Comparative algorithm retrievals prior to (QAA640) and after optimization for LIS (QAALIS) as in Fig. 9. Improvements of 50% or more shown in bold.

QAA640 QAALIS

apg adg aφ bb apg adg aφ bb

r2 0.94 0.92 0.29 0.90 0.95 0.90 0.70 0.91
PD 1.9 4.9 249.0 2.6 0.9 1.3 29.2 2.3
RMSE 0.254 0.069 0.148 0.009 0.063 0.039 0.033 0.007
Bias −0.008 0.011 0.098 0.001 −0.003 0.002 0.012 −0.001
Slope 1.07 1.25 0.60 0.90 0.99 1.13 0.80 1.00
Intercept −0.003 0.167 −0.018 −0.121 −0.011 0.107 −0.145 −0.023
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less accurate on a wavelength-specific basis (Fig. 12), though retrievals
fall within the large uncertainties. Correlations between modeled
and measured aφ(λ) are variable (0.66br2b0.90) and likely inflated
by the singleton high value, while PD and RMSE are generally high
(Fig. 13).

Performance of the algorithm for retrieving phytoplankton ab-
sorption aφ is less than optimal (Figs. 8 and 13), despite an empirical
correction to retrievals (aφ(λ)=0.33aφ(λ)) which brings retrievals
closer to the 1:1 line. Each phytoplankton taxonomic group has dis-
tinctive absorption characteristics (e.g. Johnsen et al., 1994; Roesler

Fig. 11. Waveband specific QAALIS retrievals of total absorption (apg) compared with field measurements, and statistical performance metrics for each band.

Fig. 10. Waveband specific QAALIS retrievals of total backscattering (bb) compared with field measurements, and statistical performance metrics for each band.
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et al., 1989). In addition to the error propagation discussed above, the
highly diverse composition of phytoplankton assemblages found in
LIS may contribute to the sub-optimal performance in aφ(λ). Fig. 14
shows seasonal phytoplankton taxonomic distribution across the
study area based on analysis of HPLC pigment data using pigment

ratios specific to LIS (see Section 2.1). Unsurprisingly, diatoms are
prevalent in these high nutrient waters during all seasons and nearly
all sub-regions. Cryptophyceae and prymnesiophycea are common
during winter in eastern and western LIS, respectively. Crysophyceae
are most prevalent in spring, and can be found mainly in central and

Fig. 13. Waveband specific QAALIS retrievals of phytoplankton absorption (aφ) compared with field measurements, and statistical performance metrics for each band.

Fig. 12.Waveband specific QAALIS retrievals of combined dissolved and non-algal absorption (adg) compared with field measurements, and statistical performance metrics for each
band.
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eastern LIS. In summer, dinoflagellates are widespread throughout
LIS, but they are uncommon in winter and spring. The diversity in
phytoplankton taxa found in this study agrees with earlier studies
conducted in LIS by the Connecticut Department of Environmental
Protection (CTDEP, 2005). Unfortunately, within the limited number
of rank 1 stations with HPLC measurements (n=18), no discernible
patterns were found between the quality of aφ(λ) retrievals and phy-
toplankton taxonomic groups, sub-region, season, or particle size dis-
tribution. Nevertheless, the diversity of phytoplankton shown in
Fig. 14 partially explains the high variability found in chlorophyll-
specific phytoplankton absorption (see next section) in LIS (Aurin
et al., 2010), and suggests that higher spectral resolution in Rrs may
be necessary to distinguish the aφ signature from adg.

In fact, while the QAA performs very well in retrieving apg, adg, bb,
and TSM in LIS, itmay not be the best candidate for accurately retrieving
aφ, because — as discussed above — aφ is effectively the quaternary
product of this stepwise algorithm, aggregating error from estimates
of a(λ0), bb, Y, apg, ζ, ε, and adg. Phytoplankton diversity may also play
a role, but more data are needed to explore the relationships between
taxa and retrieval performance.

4.5. Bio-optical models for Chl and TSM

Phytoplankton absorption is roughly proportional to the concen-
tration of phytoplankton and the chlorophyll-specific phytoplankton
absorption (i.e., aφ*(λ)=aφ(λ)/Chl). Therefore, retrievals of light
absorption by phytoplankton aφ are often used in conjunction with
an a priori estimate of chlorophyll-specific absorption aφ* to derive
Chl. However, the chlorophyll-specific absorption varies considerably
with phytoplankton size and pigment composition. For example,

pigment packaging effects associated with larger cell sizes common to
estuarine waters decrease aφ⁎ with increasing Chl (Ciotti et al., 2002),
while changes in pigment composition associated with changes in spe-
ciation, light availability, and nutrient stress can also lead to variability
in aφ⁎, particularly in the blue (Soret) phytoplankton absorption band
(e.g., Bricaud et al., 1995; Hoepffner & Sathyendranath, 1993). We
found no predictable relationship between aφ* and Chl, as commonly
found in open ocean waters (Bricaud et al., 1995), nor between aφ*
and taxonomic composition or particle size distribution. To retrieve
Chl, it was therefore necessary to use a regional average value for
aφ⁎(0.016±0.010 m2 mg−1 at 440 nm) which is within the range of
published values for coastal, productive waters with generally larger
cell sizes (Brewin et al., 2011; Mitchell & Kiefer, 1988). The QAA as
published does not retrieve Chl, but Chl retrieved by the QAALIS
using this approach shows a significant improvement over the stan-
dard OC3M algorithm designed for MODIS (r2 increased from 0.33 to
0.59, PD reduced from 21.6% to 12.3%, and bias reduced from 1.18 to
−0.8, Fig. 15a). New ocean color sensors with additional spectral
channels across the visible spectrum may aid in discerning subtle
spectral shifts in absorption spectra and the resulting impact on
reflected color (Dierssen et al., 2006). High resolution spectral infor-
mation between 430 and 500 nm, for example, has been used else-
where to differentiate distinct absorption features of diatoms and
cyanobacteria (Chang et al., 2004; Ryan et al., 2005). Determining
whether these approaches can be successful in waters like LIS
where between 60% and 97% (median 89%) of particulate and
dissolved absorption is attributable to adg rather than aφ will require
more data and further investigation.

Total suspended material (TSM) has been historically retrieved
from remote sensing imagery using empirical relationships between
the reflectance and TSM (e.g., Kirk, 1994) and references therein).
An increase in TSM in the water column proportionally increases
the backscattering coefficient and coincident reflectance, primarily
in wavebands with low constituent absorption. Empirical retrieval
of TSM from reflectance data has the advantage of being simple and

Fig. 15. QAALIS retrievals of a) Chlorophyll and b) Total Suspended Matter from in situ
measurements of spectral reflectance in Long Island Sound.

Fig. 14. Seasonal phytoplankton taxonomic groups based on HPLC pigment analysis
using pigment ratios specific to LIS (see text). For clarity, only the two most prevalent
taxonomic groups at each station are shown explicitly.
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easy to implement (Bowers & Binding, 2006; Dekker et al., 2001,
2002; Kirk, 1994; Miller & McKee, 2004), but the derived regression
coefficients vary widely by region depending on the absorption,
particle size distribution, and refractive index properties of the
suspended material. Here, TSM modeled using the coefficients from
a linear least-squares fit of TSM to in situ measurements of either
bb(660) or Rrs(645) (slope=95.0 or 811.1 respectively; intercept=
5.8 or 0.7 respectively) had lower error and higher correlation using
bb(660) than Rrs(645) (RMSE=0.0006 versus 0.0009; r2=0.91 ver-
sus 0.81, respectively). Modeling TSM from the QAALIS-retrieved
values of bb(660) using these coefficients produced very good re-
trievals of TSM from ~1 to 10 mg L−1 (r2=0.92, Fig. 15b), and is
less subject to error propagation in the QAA than Chl because it is
not influenced by error in retrievals of absorption components
(with the exception of a(λ0)).

5. Summary

Various semi-analytical algorithms for ocean color remote sensing
were tested for their ability to retrieve IOPs, Chl, and TSM in the optical-
ly complex waters of Long Island Sound, an urban estuary on the east
coast of the United States. Comparison to field measurements revealed
that the best semi-analytical model for these highly scattering, turbid
waters was the quasi-analytical algorithm (Lee & Carder, 2002, 2004;
Lee et al., 2006, 2010). The QAA lends itself easily to optimization of
its stepwise, component models which can be tuned independently
(i.e. unlike training neural networks, spectral matching as in LMI algo-
rithms, or simulated annealing optimization as in GSM01), and does
not require a priori assumptions regarding the spectral shapes of re-
trieved IOPs. Unfortunately, the stepwise nature has the disadvantage
that error propagates from its first total absorption retrieval at λ0, to
multispectral backscattering, multispectral absorption, and then to ab-
sorption components for phytoplankton, non-algal and dissolved con-
stituents, and ultimately to Chl. TSM is less susceptible to error
propagation because it is derived from bb, which is essentially the pri-
mary retrieval parameter of the QAA. It has been shown elsewhere
that this error propagation can lead to large errors in aφ compared
with the other retrieval constituents including adg(λ) (Lee et al.,
2010), a finding which is confirmed here.

Retrievals of bio-optical properties with a spectral reference band
at 640 nm showed significant improvement over the standard
555 nm band because total light absorption near 640 nm is primarily
greatest for seawater itself rather than for other constituents in the
water column. This remains a good reason to include such a channel,
located between ~600 and 650 nm, in future satellite missions. Opti-
mizing the model in a spectral region with known absorption mini-
mizes the inevitable propagation of error arising from the initial
empirical estimate of a(λ0). Thus, the model can better deconvolve
the influence of absorption and backscattering on the reflected
color, and it produced the best retrievals of apg(λ) and bb(λ) com-
pared to the other semi-analytical models tested here.

In optimizing the model for LIS, the most significant change in the
formulation of the QAA is the use of a spectrally varying, water-type de-
pendent f/Q factor. This factor, which accounts for the bidirectional na-
ture of the upwelling radiance field, is a function of solar and viewing
geometry, atmospheric conditions, and the IOPs themselves — particu-
larly the volume scattering function. Using radiative transfer modeling,
Morel et al. (2002) showed that dependence of f/Q on the viewing ge-
ometry and atmospheric conditions is weak within the remote sensing
domain (see Section 4.1), but spectral variability is significant for very
low Chl (0.03 mg m−3) and for high Chl (10 mg m−3). Similar results
were found in field studies in the Santa Barbara Channel in Southern
California (Chang et al., 2007; Kostadinov et al., 2007). In this study,
spectral variability in f/Q was prominent in only a handful of turbid,
sediment-laden stations near the outflows of the Connecticut and Hud-
son Rivers (Figs. 4 and 5) — stations that can be identified remotely by

their high reflectances in the red— indicating that the variability derives
from water column properties rather than viewing geometry or atmo-
spheric conditions. The recently introduced CCNY BRDFmodel also con-
tains spectral variability (although not the ability to vary with optical
water type). It was therefore tested in our inversions and found to per-
form fairly well, but did not improve retrievals over the untuned
QAA640 algorithm.

Despite optimization, retrievals of phytoplankton-related parame-
ters, such as aφ(λ) and Chl, were less accurate than other parameters.
Lee et al. (2010) demonstrated that error in aφ is expected to be
higher than other retrieval parameters for several reasons, but princi-
pally because it is susceptible to error propagation from all other
retrieval parameters combined. This error may be considerably
reduced in waters where aφ and adg are of relatively comparable mag-
nitudes (i.e. 0.06badg(440)/aφ(440)b2), but in the CDOM and
particle-laden waters of LIS, adg(440)/aφ(440) ranges from 3.6 to
30.0 (Aurin et al., 2010) . Moving away from a stepwise model for
retrieving aφ in waters where aφbbadg should enhance our ability to
assess phytoplankton biomass from space in the complex waters.
Phytoplankton assemblages across the region derived from HPLC
pigment analysis showed remarkable diversity including significant
relative populations of cyanophyceae, prymnesiophyceae, chryso-
phyceae and cryptophyceae, in addition to the expected dominance
of diatoms and dinoflagellates (Fig. 14). Given the diversity of taxo-
nomic assemblages and variability in aφ* in LIS, accurate derivations
of Chl and other phytoplankton-related parameters (e.g., primary
productivity) is likely to require more spectral information than is
available from multi-spectral sensors and is the subject of future
research.

Optimization and refinement of ocean color remote sensing algo-
rithms in optically complex regions such as LIS are necessary for the
synoptic study of diverse environmental issues such as sediment
transport, light availability for seagrasses, eutrophication, and bud-
gets of dissolved and particulate carbon and other elemental constit-
uents. Inherent optical properties retrieved from space are critical to
furthering our understanding of light penetration in the water col-
umn and the biogeochemical processes in coastal and estuarine wa-
ters. For example, the dissolved and particulate concentration
parameters retrieved here are useful for assessing riverine discharge,
mixing and residence times of surface waters, as well as assessing the
turbidity and light penetration in this estuary. Even in one of the most
optically complex, dynamic, and diverse estuaries in the U.S., we
demonstrate here that given regional optimization and the proper
wavebands, ocean color can be successfully used to estimate key op-
tical and biogeochemical properties.
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