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Abstract

The third primary production algorithm round robin (PPARR3) compares output from 24 models that estimate depth-

integrated primary production from satellite measurements of ocean color, as well as seven general circulation models

(GCMs) coupled with ecosystem or biogeochemical models. Here we compare the global primary production fields

corresponding to eight months of 1998 and 1999 as estimated from common input fields of photosynthetically-available

radiation (PAR), sea-surface temperature (SST), mixed-layer depth, and chlorophyll concentration. We also quantify the

sensitivity of the ocean-color-based models to perturbations in their input variables. The pair-wise correlation between

ocean-color models was used to cluster them into groups or related output, which reflect the regions and environmental

conditions under which they respond differently. The groups do not follow model complexity with regards to wavelength or

depth dependence, though they are related to the manner in which temperature is used to parameterize photosynthesis.

Global average PP varies by a factor of two between models. The models diverged the most for the Southern Ocean, SST

under 10 �C, and chlorophyll concentration exceeding 1mgChlm�3. Based on the conditions under which the model results

diverge most, we conclude that current ocean-color-based models are challenged by high-nutrient low-chlorophyll

conditions, and extreme temperatures or chlorophyll concentrations. The GCM-based models predict comparable primary

production to those based on ocean color: they estimate higher values in the Southern Ocean, at low SST, and in the

equatorial band, while they estimate lower values in eutrophic regions (probably because the area of high chlorophyll

concentrations is smaller in the GCMs). Further progress in primary production modeling requires improved understanding

of the effect of temperature on photosynthesis and better parameterization of the maximum photosynthetic rate.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Although photosynthesis is a key component of
the global carbon cycle, its spatial and temporal
variability is poorly constrained observationally.
Furthermore it is unclear how this variability may
respond to potential scenarios of climate change.
Global net primary production, the carbon fixed
through photosynthesis and available for higher
trophic levels, occurs in both terrestrial (52%) and
marine ecosystems (48%) (Field et al., 1998). The
highly dynamic nature of marine photosynthesis is
revealed by considering that the annual mean value
of 45–50Gt C is carried out by a phytoplankton
biomass of �1Gt. Ship resources cannot resolve
low-frequency spatial and temporal variability,
much less make direct observations of mesoscale
variability beyond isolated snapshots. The chronic
undersampling of ship-based estimates of global
primary production requires significant extrapola-
tions, making it essentially impossible to quantify
basin-scale variability from in situ measurements.

Fortunately, satellites provide a solution (McClain
et al., 1998). Sensors that measure ocean color are
presently used to estimate chlorophyll concentration
in the upper ocean. Integrated biomass can be
obtained from ocean color by assuming a vertical
profile and a carbon to chlorophyll relationship. To
go from biomass, a pool, to photosynthesis, a rate, a
time dependent variable is needed. Solar radiation is
an obvious choice, and simple mechanistic models
compute productivity from biomass, photosyntheti-
cally available radiation (PAR), and a transfer or
yield function which incorporates the physiological
response of the measured chlorophyll to light,
nutrients, temperature, and other environmental
variables. As a variable amenable to remote sensing,
sea-surface temperature (SST) is often used to
parameterize the photosynthetic potential.

There exist a range of modeling approaches, e.g.,
Platt and Sathyendranath (1993), Longhurst et al.
(1995), Howard and Yoder (1997), Antoine and
Morel (1996), Behrenfeld and Falkowski (1997a), or
Ondrusek et al. (2001). These models can be
distinguished by the degree of explicit resolution in
depth and irradiance as described by Behrenfeld and
Falkowski (1997b). While vertically and spectrally
explicit models incorporate information about algal



ARTICLE IN PRESS

Table 1

Model participants, type of model used, group to which they

belong, and parts of PPARR3 for which we have received results

No. Participants Type Group Parts

1 Carr WIDI 1 1, 2, 3

2 Behrenfeld WIDI 2 1, 2, 3

3 Behrenfeld WIDI 4 1, 2, 3

4 Turpie and Esaias WIDI 2 1, 2, 3

5 Ciotti WIDI 2 1, 2, 3

6 Ishizaka and Kameda WIDI 2 1, 2, 3

7 Moore WIDI 1 1

8 Dierssen WIDI 1 1, 2

9 Dierssen WIDI 1 1, 2

10 Dowell WIDI 2 1, 3

11 Turpie and Esaias WIDI 4 1, 2, 3

12 Ryan WIDI 3 1, 2, 3

13 Carr WIDI 4 1, 2, 3

14 Scardi WIDI 1 1, 2, 3

15 Lohrenz WIDR 2 1

16 Lohrenz WIDR 2 1

17 Lohrenz WIDR 3 1

18 Asanuma WIDR 3 1, 2, 3

19 Marra WIDR 4 1, 2, 3

20 Antoine, Gentili, and Morel WRDR 4 1, 2, 3

21 Smyth WRDR 4 1, 2, 3

22 Melin and Hoepffner WRDR 1 1, 2, 3

23 Waters and Bidigare WRDR 2 1, 2, 3

24 Arrigo and Reddy WRDR 4 1, 2, 3

25 Aumont GCM 5 1, 3

26 Moore GCM 5 1

27 Yamanaka and Aita GCM 5 1

28 Dunne GCM 5 1

29 Buitenhuis and Le Quéré GCM 5 1, 3

30 Gregg GCM 5 1

31 Gregg GCM 5 1

See text for model and group description.
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physiology and its dependence on environmental
factors, the paucity of measurements of physiologi-
cal characteristics on the global scale hinders their
full application. A common parameter in many
simpler models is the maximum observed photo-
synthetic rate (normalized by biomass) within the
water column (PB

opt). Another parameter, PB
max, is

derived from short-term light-saturated incubations;
consequently extant measurements are fewer. PB

max

is defined as the maximum rate of photosynthesis
when light is not limiting, while PB

opt represents the
effective photoadaptive yield in the field for specific
light conditions.

A series of round-robin experiments have been
carried out to evaluate and compare models which
estimate primary productivity from ocean color
(Campbell et al., 2002). In these experiments, in situ
measurements of carbon uptake were used to test
the ability of the participating models to predict
depth-integrated primary production (PP) based on
information accessible via remote sensing. The first
round-robin experiment used data from only 25
stations. The second primary production algorithm
round robin (PPARR2) used data from 89 stations
with wide geographic coverage (Campbell et al.,
2002). There were 10 participant teams and 12
models.

Eight models were within a factor of 2.4 (based
on one standard deviation in log-difference errors)
of the 14C measurements (Campbell et al., 2002).
Biases were a significant source of error. If biases
were eliminated, 10 of the 12 model estimates would
be within a factor of two of the in situ data. The
algorithms performed best in the Atlantic region,
which has historically contributed the most data for
parameterization. The equatorial Pacific and the
Southern Oceans presented the worst results. The
Southern Ocean data included both the lowest and
highest values of primary production, so the poor
performance may be related to this dynamic range.
The high-nutrient low-chlorophyll (HNLC) condi-
tions observed in both the equatorial Pacific and the
Southern Oceans may contribute to the higher
model-data misfit, as most models were not devel-
oped with data subject to micronutrient limitation.
Likewise, globally-tuned parameterizations of tem-
perature and of the vertical extent of surface
biomass are likely to fail in both regions.

The third primary production algorithm round
robin (PPARR3) compares output from 24 ocean-
color-based models and model variants from the
US, Europe, Japan, and Brazil (Table 1). The first
part of PPARR3 is a comparison of monthly global
primary production fields generated by the different
algorithms while part 2 is a sensitivity analysis.
These two parts do not use in situ data to quantify
model performance. Therefore, it is not possible to
define a ‘best’ model. Part 3 is a ground-truth
comparison like PPARR1 and PPARR2. We
compare modeled PP and a high quality database
of 14C measurements from the tropical Pacific
(Le Borgne et al., 2002). The poor performance of
the PPARR2 models in the tropical Pacific and the
plentiful high-quality data led us to emphasize this
region within PPARR3. An upcoming manuscript
(Friedrichs et al., in prep) will present the results of
part 3 of PPARR3 and recommend the best
performing model for the tropical database com-
parison. A future study will look at a broader range
of in situ data.
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Circulation and nutrient fields are necessary to
fully quantify oceanic carbon fluxes and biological
productivity. In an effort to bring the ocean-color-
based productivity modelers together with ecosys-
tem and biogeochemical modelers, we invited the
latter group to participate so we can compare their
modeled primary production fields for the same
time period with those of the ocean-color models.
Our sole criterion for participation were that the
models simulate global primary production fields.

In this paper, we describe PPARR3 results from
parts 1 and 2, i.e. a global intercomparison of
models for eight months and a sensitivity analysis.
Although a comparison with in situ data is needed
to quantify the performance of the models, the
intercomparison enables us to discern the conditions
under which the models have divergent results. By
comparing the model output, we can distinguish
groups, which in turn can be understood on the
basis of the sensitivity analysis. Here we address the
observed spatial, seasonal, and interannual varia-
bility among the participating models.

2. Data and methods

2.1. Participating models

The participating models are of all types dis-
cussed by Behrenfeld and Falkowski (1997b):
wavelength- and depth-integrated (WIDI, 14 mod-
els), wavelength-integrated and depth-resolved
(WIDR, five models), and wavelength- and depth-
resolved (WRDR, five models). The list of models is
given in Table 1, classified by model type, with the
name of the participant(s), and the PPARR3 parts
to which they have contributed. Seven general
circulation models coupled to biogeochemistry
(GCM-based) have participated in part 1 (global
and regional intercomparison). The models are
described in the Appendix.

2.2. Approach

The input data required for the participants to
estimate integrated primary production were pro-
vided by the PPARR3 organizers Carr and Frie-
drichs; the participants then returned their results
for subsequent comparison. In part 1, the input
fields corresponded to eight monthly mean global
maps of chlorophyll from SeaWiFS, SST from
AVHRR Pathfinder, photosynthetically available
radiation (PAR) from SeaWiFS, and mixed-layer
depth estimated from two different general circula-
tion models: the JPL-MIT model and the NCAR
model. Despite differences in the two fields of
mixed-layer depth, the impact on the resulting PP
fields was almost negligible. Hereafter, we only
show results which used mixed-layer depth from the
JPL-MIT model. The monthly means correspond to
January, March, May, July, September, November,
and December 1998, and December 1999. We
worked at a nominal 18-km resolution obtained
by subsampling the 9-km standard-mapped-image
fields. The participants (Table 1) used these input
fields to estimate primary production integrated to
the 1% light level (hereafter PP). Here we compare
the resulting PP fields. The approach is outlined in
Fig. 1 for December 1998. This study does not
provide an estimate of the global PP for the study
period, but rather compares model output to
identify the conditions under which models diverge.
In fact we have used Version 2 of SeaWiFS data
(first reprocessing), but for our purpose of model
intercomparison, improved chlorophyll determina-
tion has little bearing except in localized areas. Save
two exceptions, the GCM-based models did not use
any of the input variables that were so fundamental
to the ocean-color-based models. Participation of
the GCM modelers was added after the project
design was developed. Model #26 used the MLD
fields and model #31 assimilated the SeaWiFS
chlorophyll, although not the same version and
resolution as shown here.

The pair-wise linear correlation of the spatial and
seasonal variability of the models enables us to
distinguish four groups of ocean-color-based mod-
els, within which the models are highly correlated,
and among which the correlation is less (see Section
3.1 below). To derive a mean model, we averaged
the models within each group together (omitting
model #4 because it is identical to model #2) and
then averaged the four group-average models
together. The model spread is then quantified by
comparing each model with the mean model. We
calculated the difference between the decimal
logarithm (log base 10) of each model and that of
the mean, which is in effect the logarithm of the
ratio between the model and the average model,
following Campbell et al. (2002). We divided the
global fields into basins, SST levels, chlorophyll
concentrations, and basin-latitudinal bands to
evaluate model similarity and divergence. There is
no reason to assume that the mean model is closer
to truth than the outlier models that appear as
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Fig. 1. Approach taken in Part 1 of PPARR3. The ocean-color modelers were given monthly mean input files: mixed-layer depth from two

GCMs (MLDJ and MLDN), SST, PAR, and chlorophyll concentration. They estimated integrated primary production and returned their

values to the organizers. These are the input fields corresponding to January 1998 and the resulting ocean-color-mean model and the

observed range of ocean-color model estimates.
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anomalous. However, the mean model provides a
standard of consistency. If an anomalous model is
closer to ‘truth’ (which can be evaluated in part 3
and in future ground-truth comparisons), its diver-
gence from the mean model indicates that a
majority of the models are far from truth.

In part 2 of the PPARR3 exercise, the sensitivity
of the models to the input variables was examined
by distributing data for 11 representative points, five
from January 1998 and six from July 1998 (Table 2
and Fig. 2). These points correspond to a pixel
(�18 km) and are chosen as representative of
seasonal and geographic variability, as well as
covering a range of input values and model
response. We then systematically varied the value
of each input variable, holding the others constant.
The range of values for the input variables is
roughly the range observed for our study period: for
SST, �1 to 30 �C; for mixed-layer depth, 10–480m;
for PAR, 5–60Einm�2 day�1; and for chlorophyll
concentration, 0.01–10mgm�3. The final database
consists of 385 values corresponding to the original
data point and 34 variations at each geographical
location. Carr and Friedrichs distributed these
values to the participants who then estimated PP,
from which we estimated the difference in the
decimal logarithm of PP for each perturbation of
the input variable.

3. Results

3.1. Relationships among models

In PPARR2, production estimated from ocean-
color algorithms was found to be highly correlated
and the correlation was independent of model
complexity (Campbell et al., 2002). In an attempt
to group the models on the basis of related output,
here we estimated pair-wise correlation and root-

mean-square (rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðmodeli �model2j Þ=n

q
) cor-

responding to the monthly global PP fields in
January and July 1998 (Fig. 3). The correlation
coefficient and rms between any pair of models is
generally inversely related, with higher correlation
between models with low rms (Figs. 3A and B). This
is reassuring but not necessarily expected: correla-
tion quantifies similarity in the variability while rms
is a measure of mismatch. Perfectly coincident
patterns may present a large systematic bias. The
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Fig. 2. Geographical location and point number, for points used in the sensitivity analysis (part 2 of PPARR3), overlaid on the mean

model primary production for January and July 1998.

Table 2

The points used for the sensitivity analysis

No. Mon. Lat. Lon. MLD SST PAR CHL PP Range

1 Jul �54.1 30.9 66.6 1.65 3.60 0.1758 0.0628 0.6697

2 Jan 16.2 66.1 71.8 26.40 42. 0.4955 0.9922 0.4366

3 Jan 33.8 �127.3 68.3 15.15 23.40 0.2951 0.4497 0.2876

4 Jan �54.1 �162.4 32.5 6.90 41.10 0.5309 0.6914 0.3302

5 Jan 16.2 �39.4 70.3 24.75 38.40 0.1380 0.4543 0.39

6 Jul �1.4 153.9 37.1 29.85 44.10 0.1012 0.3708 0.4279

7 Jul �36.6 �39.4 63.0 16.05 15.60 0.2754 0.3570 0.3311

8 Jul 51.3 �21.8 15.7 15. 42.90 1.9724 1.8509 0.44

9 Jul �1.4 �144.8436 22.9 24.45 51. 0.6095 1.1781 0.3828

10 Jul 33.8 153.9 10.7 25.05 49.50 0.1288 0.4769 0.4564

11 Jan �36.6 83.7 15.7 18.75 52.50 0.2661 0.7507 0.4173

See Fig. 2 and text for details. No. denotes the numbering scheme (Fig. 2 and text); Mon. the month from which the data point was

extracted; Lat. and Lon. are the latitude and longitude of the point; MLD is the mixed-layer depth at that location for that month in

meters; SST is the sea-surface temperature in �C; PAR the photosynthetically available radiation in Einm�2 day�1; CHL is the chlorophyll

concentration in mgm3; PP is the depth-integrated primary production in gCm�2 day�1; and Range is the observed range in ocean-color-

based modeled PP in gCm�2 day�1.
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correlation among the ocean-color-based models is
generally greater than 0.7 and always exceeds 0.5
(Fig. 3A). By contrast the GCM-based models
are poorly correlated with the ocean-color models
or among themselves (ro0:4), with the exception
of models #25/29 and #30/31 (r40:66). The rms
values range between 0.2 and 0.4 gCm�2 day�1

for the ocean-color models. The rms generally
exceed 0.4 gCm�2 day�1 for the GCM-based mod-
els (Fig. 3B and D), except for #25/29 and #30/31
(rmso0:3).

It is interesting to note that, as in the study of
Campbell et al. (2002), neither model structure or
type are the strongest predictor of relationship
between model output. For example, model #24, a
WRDR model, is most highly correlated to model
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Fig. 3. Matrix of pair-wise correlation coefficients (A) and rms values (B) for the PP fields of January and July for each model. Histogram

of correlation coefficients (C) and rms (D).
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#3, a WIDI model, which only varies from #2 by the
temperature dependence of the PB

max. In turn, model
#3 is more highly correlated with the WRDR
models #20, 21, and 24 (r40:92) and with other
WIDI models, than with model #2 (r ¼ 0:77).
Similarly, model #12, a variant of the Howard,
Yoder, Ryan (HYR) model (Howard and Yoder,
1997), is correlated with models #18, 17, and 20 at
r40:7, and is less correlated with the other HYR
model variants.

A cluster analysis (Middleton, 2000) was carried
out with the correlation matrix to group the models
(Fig. 4). The correlation matrix is reduced to a
single correlation coefficient via an iterative proce-
dure: the two largest mutual correlations are
identified; these two variables are merged together
and the other variables take on an ‘average’
correlation within the reduced matrix (the un-
weighted pair-group method using arithmetic
averages or UPGMA as in Rohlf, 1963). The results
are expressed as a dendrogram. Five groups were
distinguished.

Group 1 (Models #1, 8, 9, 14, 22, and 7): This
group includes the simplest model, a WRDR model,
and four WIDIs: three variants of the vertically
generalized production model (VGPM, Behrenfeld
and Falkowski, 1997a) and a model based on neural
networks. All the models in this group are highly
correlated among themselves (r40:82). Four of
the models in this group have no SST-dependence
(#1, 8/9, and 22).

Group 2 (Models #10, 15, 16, 2, 4, 5, 6, and 23):
This group has a WRDR model, the original
VGPM, its twin (#4), and two additional VGPM
variants (#5, 6), as well as two WIDR which
parameterize PB

opt following VGPM (#15, 16). All
models in this group (except for #23) are correlated
at r40:8. Group 2 is correlated to Group 1 with an
r�0:65.

Group 3 (Models #12, 18, and 17): This group
includes two WIDR models and a WIDI (a HYR
variant) which distinguishes integrated primary
production within and below the mixed layer
(#12). Model #12 does not use SST. These models
are correlated at r40:7 and are more correlated to
Group 4 than to the previous two groups.

Group 4 (Models #3, 13, 21, 20, 19, 11, 24): This
group includes three WRDRs, a VGPM variant, an
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absorption-based WIDR model, and two HYR
variants. Five of these models use the Eppley (1972)
parameterization of PB

max, and the WIDR (#19) uses
an exponential function of SST to parameterize the
attenuation coefficient for chlorophyll. These mod-
els are very highly correlated among themselves.

Group 5 (Models #25, 29, 30, 31, 26, 28, and 27):
This group includes all of the GCM-based models,
none of which cluster at r ¼ 0:7. They are very
weakly correlated among themselves as a group
(ro0:4) except for models #25 and 29 (r40:65) and
#30 and 31 (r40:8), each pair of which are variants
of the same model; the two pairs are correlated at
r�0:4. Model #26 is more correlated to Group 4
than to other models in the group, while #28 and 27
show little relationship with either the other GCMs
or the ocean-color-based models.

Hereafter, the models are not portrayed in the
graphs in their numerical numbering scheme, which
follows complexity, but according to the relation-
ship groups. The figures that break out the model
estimates of PP according to basin, chlorophyll
concentration, or SST level show that models with
higher or lower than average PP are spread
throughout the groups. However, group-related
trends are distinguished, likely resulting from
similarities in parameterization.

3.2. Global PP

The mean global PP estimated from the ocean-
color-based models for six months of 1998 (January,
March, May, July, September, and November) is
50.7GtC y�1 (Fig. 5A). Average global values for
the four ocean-color groups are 44, 55, 48, and
57GtC y�1, respectively; the global mean PP is
55GtC y�1 for the GCM-based models. Global
annual PP estimated by most of the GCM models
is generally comparable to that of the ocean-color-
based models. Model #28 represents a climatologi-
cal year, which may explain some discrepancies.

The range of model estimates for the six-month
average is 32GtCy�1. Four ocean-color PP models
fall at or below 40GtC y�1, while five are at or
above �60GtCy�1. Most of the models, including
GCMs, estimate PP within 49 and 60GtC y�1.
Group 1 PP estimates tend to be low, as are those of
Group 3 (except for #17). By contrast, other than
model #6, most models in Groups 2 and 4 are at, or
above, the mean model. In terms of model structure,
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the VGPM variants are consistently close to the
average model value with the exception of #6, which
is low (Fig. 5A). The broadest range is observed
among the WIDR models (#17 is very high while
#18 is low) and the non-VGPM WIDI models (#13
is high, while #12 and 14 are low).

The observed range of values for global produc-
tion (Fig. 5A) is comparable to that obtained from
extrapolations of field measurements, such as those
of Koblentz-Mishke et al. (1970) or Berger (1989),
but it would be a mistake to interpret this as a lack
of progress. Rather, the similarity lends credibility
to our understanding of global marine photosynth-
esis. Ocean-color-based models allow us to docu-
ment spatial and temporal variability on scales that
are inaccessible to field programs.

We compared December 1998 with December
1999 to see if the models consistently captured
variability between the two years (Fig. 5B). Global
PP estimated by the ocean-color-based models is
uniformly larger in December 1999 than in 1998 by
on average 3%. Model #27 was the only GCM-
based model that estimated a comparable difference
between the two Decembers to that of the ocean-
color-based models (not surprising since forcing
fields for interannual variability in the GCM-based
models were different). The observed increase in PP
likely results from the observed increase in both
chlorophyll concentration and PAR in December of
1999 relative to December 1998.

3.3. Basin PP

We divided the world ocean into basins following
Antoine et al. (1996) with the mask available at
http://marine.rutgers.edu/opp/Mask/MASK1.html.
The integrated PP in each basin is proportional to
the basin areal extent in the Pacific, while the
Atlantic and Indian tend to be slightly more
productive and the Southern and Arctic Oceans
tend to be less productive (Table 3). These
differences are consistent with basin average lati-
tude and the corresponding insolation. In all basins,
the range between model estimates is as large as the
mean; in the case of the Arctic Ocean, it is almost
twice as large, reflecting both the small area and the

http://marine.rutgers.edu/opp/Mask/MASK1.html
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Table 3

Breakout of primary production estimated by ocean-color-based models for the ocean basins, chlorophyll concentration levels, and SST

ranges

Area, % Mean/GtCy�1 (%) Min/GtCy�1 Max/GtCy�1 Range, %

Basin

Pacific 45 21 (44) 15.5 30.9 72

Atlantic 23 12.8 (27) 9.1 17.9 68

Indian 17 9.9 (21) 6.9 15.1 83

Southern 13 2.6 (5.5) 1.1 4.9 149

Arctic 1.2 0.33 (0.7) 0.02 1.2 374

Med. 0.8 0.45 (0.95) 0.28 0.73 97

Chl level

Oligotrophic 26–32 9.2 (19) 4.6 14.1 100

Mesotrophic 65–68 34.8 (70) 24.2 48.8 71

Eutrophic 3–5 5.6 (11) 2.4 9.9 136

SST range

SSTo0 �C 2–4 0.52 (0.8) 0.17 2.1 372

0–10 �C 13–17 5.1 (10) 2.1 8.4 125

10–20 �C �20 11.9 (25) 7.6 18.9 95

420 �C SST �60 32 (64) 19.1 48.7 92

Area refers to percentage of global ocean area; mean is the average annual integrated primary production for 1998 (six months) for ocean-

color model mean. The values in parenthesis (%) after the mean represent the percentage of the global mean integrated primary

production. Min and max refer to the minimum and maximum model estimates and the range is the maximum minus the minimum

expressed as a percentage of the mean model.
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problems inherent to estimating primary production
at high latitude (Table 3). The seasonal signal is best
examined globally by looking at latitudinal bands
(see Section 3.6); it is averaged out in the Atlantic
and Pacific basins because the two hemispheres are
out of phase. The pronounced seasonal signal in the
Southern and Arctic Oceans reflects little or no
production in hemispheric winter (Fig. 6). PP in the
Pacific, Atlantic, and Indian basins is underesti-
mated by Group 1 and overestimated by Group 4.
Conversely Group 1 is high at high latitude, in the
Southern and Arctic Oceans. The PP estimate of
the GCM-based models of Group 5 is higher than
the ocean-color models in the Pacific and Southern
Ocean, but is comparable to them in the Atlantic,
Indian, and Arctic basins (Fig. 6).

The deviation between each model/monthly value
and that of the mean model is shown in Fig. 7. The
deviation is expressed as the difference between the
decimal logarithm of that model/month and that of
the ‘mean’ model for that month. The ratio of the
model mean and the multi-model mean is written
within the box when the difference of the logarithms
exceeded �0:32, i.e. when the model was smaller or
larger by an approximate factor of two than the
mean. We consider the models that diverge beyond
this criterion for more than one month to be
anomalous.

No ocean-color-based model is anomalous in the
Atlantic, Pacific, or Indian Oceans, and only two
are anomalous in the Mediterranean (Fig. 7). There
are six anomalous models each in the Southern
Ocean and Arctic (Fig. 7). In the Southern Ocean,
models #1 and 10 counter the seasonal cycle by
estimating lower PP in austral summer. Four
models reinforce the seasonal cycle with decreased
austral winter values (models #8 and 18) or by
enhanced PP in austral summer (#7 and 23). Model
#12 is anomalously low through the year. All GCM-
based models estimate significantly higher Southern
Ocean PP for austral winter (#25, 29, 26) or all of
the year (#28 and 27). Southern Ocean PP in model
#31 is very close to that of the mean model. The
Arctic presents the most extreme anomalous results
for the ocean-color-based models: the PP is very
small in models #12, 11, and 24, while models #1, 7,
and 19 estimate higher PP than the mean. The
GCM-based models are comparable to the ocean-
color mean except for higher PP in the boreal
winter. Summer PP estimated by models #11 and 24
is anomalously low in the Mediterranean, while
#12 and 18 are anomalously low in boreal winter.
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GCM-based models #26, 30 and 31 have no
Mediterranean basin, and the other models of
Group 5 generally underestimate PP in this basin,
especially in winter months.

3.4. Chlorophyll concentration levels

We divided the global fields into levels of chlorophyll
concentration, i.e. oligotrophic (o0:1mgChlm�3),
mesotrophic (0.1–1mgChlm�3), and eutrophic
waters (41mgChlm�3), to evaluate the model
performance for these conditions (Fig. 8).
Although, there is a variable apportioning in each
category from month to month, concentrations are
consistently less than 1mgChlm�3 for �95% of the
ocean (Table 3). As expected from the area, the bulk
of global PP occurs in mesotrophic waters,
�35GtC y�1, or 70% (Fig. 8 and Table 3).
Integrated PP in eutrophic waters is about half that
of oligotrophic ones, although their area is 6–10
times smaller (Fig. 8 and Table 3). The normalized
range between models varies most for eutrophic
waters (Table 3 and Fig. 8). Systematic differences
between the groups can be distinguished among the
chlorophyll concentration levels. PP estimated by
Group 1 is much lower than the mean in oligo-
trophic and mesotrophic regions, while that of
Group 3 is lower than the mean model for eutrophic
waters, but is higher than the mean in oligotrophic
waters. Since the majority of global PP occurs in
mesotrophic regions, this explains why Group 1
estimates lower global PP than the mean model
(Figs. 5 and 8). Groups 2 and 4 have higher PP in
mesotrophic, and Group 4 is much higher under
eutrophic conditions.

It should be noted that the GCM-based models
do not use ocean color, so the eutrophic areas for
models #1 through 24 are unlikely to coincide with
models 25 through 29. We compared the chlor-
ophyll fields for models #25 and 29 with the input
fields used here. The area in which chlorophyll
concentrations are eutrophic is 30% (#29) to 60%
(#25) smaller than in the SeaWiFS fields. The
oligotrophic and mesotrophic areas are within
10% for #25 though the oligotrophic area is 50%
larger in #29. PP from Group 5 is higher than
the ocean-color mean when chlorophyll is less than
0.1mgChlm�3, while it is much lower in eutrophic
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regions. This is consistent with the GCMs having
fewer very high values.

Model output diverges most for low and high
chlorophyll concentration levels, but there is only
one anomalous ocean-color model in eutrophic
waters (#12, Fig. 9). Although the differences are
less than a factor of two from the mean model, there
are distinct tendencies in some models and groups.
For example, model #6 is low for mesotrophic and
eutrophic waters but close to the mean for
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chlorophyll less than 0.1mgChlm�3, while models
#23, 15, and 16 are low for eutrophic, and high for
oligo- and mesotrophic waters (Fig. 9). Models #7
and 13 are anomalously high for eutrophic waters
and normal to low for oligotrophic waters. All
GCM-based models are anomalously lower than the
model mean in eutrophic waters and overestimate
PP in oligotrophic conditions.

3.5. SST bins

SST is used to parameterize maximum photo-
synthetic rates in many ocean-color-based models,
so we divided our data-set into SST bins: T1, below
0 �C; T2, from 0 to 10 �C; T3 from 10 to 20 �C; and
T4, exceeding 20 �C. As in the chlorophyll concen-
tration levels, the percent area in each SST bin
varies seasonally; in approximate terms SST exceeds
20 �C in 60% of the global ocean, while it is below
0 �C in 2–4%. In many PP models, maximum
photosynthetic rate increases with SST, so the
corresponding contribution of SST bins greater
than 10 �C to global PP is about 5% higher than
their corresponding area: �12 and 32GtC y�1 for
T3 and T4, respectively (Table 3). Group 1, which
includes models with no explicit SST-dependence,
underestimates PP compared to the mean when SST
exceeds 10 �C (T3 and T4) and tends to over-
estimate mean PP for very low SST (Fig. 10). The
PP estimated by Group 2, which includes several
VGPM variants which estimate maximum PB

opt at
intermediate SST, is much higher than the mean for
SST between 0 and 20 �C (T2 and T3) and is lower
for T4. Models in Group 4, which use an
exponentially increasing function of SST to para-
meterize PB

max or the attenuation coefficient for
light, estimate significantly higher PP in T4 than
the mean model. Modeled production varies by
a factor of 3 for SST less than 10 �C (Table 3 and
Fig. 10). Although the divergence of models at low
temperatures has relatively low impact globally, it is
very significant at high latitudes, such as the
Southern Ocean.

As expected, there are several anomalous models
below 0 �C: models #1 and 7 from Group 1 and #10
from Group 2 are consistently higher than the
multi-model mean while models #5, 6, 12, and 24
are consistently low (Fig. 11). Only models #12 and
18 of Group 3 are anomalously low for T2 although
models in Group 1 generally overestimate PP with
respect to the mean. PP below 10 �C estimated by
GCM-based models #27 and 28 is higher than
the multi-model mean; although SST is also likely to
be different for the GCMmodel runs, the systematic
bias for low SST is likely significant. For SST
values exceeding 10 �C, there are no anomalous
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ocean-color models. However, most models in
Group 2 overestimate PP in T3, while Groups 1
and 3 underestimate relative to the mean for
SST420 �C. PP below 0 �C and for SST exceeding
20 �C is higher in 9912 than in 9812, likely because
of interannual variability in global temperatures
(not shown).

3.6. Seasonal differences in latitudinal bands

The primary production of the mean model
averaged within latitudinal bands is consistent
between basins, with the exception of the highly
productive northern Indian Ocean (Fig. 12). Max-
imum PP occurs in the equatorial band
(10 �S–10 �N) of all three basins (40:5 gCm�2

day�1) and between 10 and 40 �N in the Indian
Ocean (�0.75 gCm�2 day�1). Minimum PP values
occur poleward of 40� in hemispheric winter where
they are comparable to those of the remainder of
the basin in hemispheric summer (�0:35 gCm�2

day�1). Average PP between 10 and 40 �S is lower
than the corresponding band in the northern hemi-
sphere. The seasonal cycle is very pronounced
poleward of 40� and it decreases moving equator-
ward except in the northern Indian Ocean. The
Pacific equatorial band shows a maximum later in
the year, which may reflect interannual variability
associated with the 1997–1998 El Niño rather than a
seasonal progression.

Fig. 13 shows how the models diverge from the
mean model in global latitudinal bands. The
features were essentially the same for individual
basins, except for model #6 which has anomalously
low PP in the northern Indian Ocean (not shown).
Model #1 is consistently higher than the mean in
hemispheric winter poleward of 40�, while models
#12 and 18 are consistently low. Model #7 is
generally high in summer north of 40 �N. Several
models in Group 2 (#10, 14, 15, 2, 4, and 5) tend to
overestimate PP relative to the mean poleward of
40�, but not anomalously so. By contrast this group
underestimates PP in the equatorial region of all
three basins, in the case of model #6 by over a factor
of two. Model #17 of Group 3 and #24 of Group 4
are generally high in the tropics and subtropics. All
the models of Group 4 overestimate PP in the
equatorial band and underestimate it poleward of
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40�. The GCM-based models, especially model #27,
tend to overestimate ocean-color mean PP in the
equatorial region. Models #27 and 28 obtain higher
PP than does the mean ocean-color model poleward
of 40 �S, while #30 and 31 underestimate PP
poleward of 40 �N.
3.7. Sensitivity analysis

This analysis examines the effect of the input
variables on the ocean-color-based determination of
primary production. The GCM-based models did
not carry out this exercise as they do not use the
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input fields nor is it trivial to change the forcing
values at specific locations. Starting with the 11
‘representative’ points of Table 2 and Fig. 2, we
systematically varied the mixed-layer depth, SST,
PAR, and chlorophyll concentration within a range
of reasonable values, holding the other input
variables at their original magnitude. We then plot
the impact in simulated primary production (DPP)
at each location corresponding to the change in each
of the four input variables for each model, (DMLD,
DSST, DPAR, and DChl). Because the variation in
the input variables is unrealistic for some locations,
we have reduced the axes of the plots to correspond
to the observed range of input variables at the study
points. We only show the most extreme and
characteristic points in these plots (points 1, 2, 4,
7, 8, 10, and 11) that are evenly distributed between
January and July (Table 2). A subset of ocean-
color-based models have contributed to part 2
(Table 1).

Only six models use mixed-layer depth (Fig. 14;
models #14 of Group 1, #23 of Group 2, #12 of
Group 3, and #20, 11, and 24 of Group 4). The
impact of changing mixed-layer depth is less than a
factor of two except for model #11 (which integrates
to mixed-layer depth instead of to euphotic depth)
where PP almost triples in response to increased
mixed-layer depth. In two models (#11 and 14)
deepening mixed layers increases PP asymptotically.
Models #20 and #23 are insensitive to DMLD.
Model #12 shows maximum impact for changes of
order 50m, which primarily lead to decreases in PP.
Model #24 presents peak DPP at DMLD of
75–100m, which then decreases for deeper mixed
layers. In model #20, DPP is weakly negative for
positive DMLD, while model #23 responds primar-
ily, if weakly, to negative DMLD. Points 10, 11, and
8 are most sensitive; these points have shallow initial
mixed-layer depths (Fig. 2 and Table 2).

All models except for #1, 8/9, and 22 (in Group 1)
and #12 (Group 3) use SST (Fig. 15). There seem to
be four responses to SST perturbations, which
can be seen best for the full range of perturbation
(Fig. 16): a gaussian shape (#2/4, 5, 6), a linear



ARTICLE IN PRESS

-50 0 50 100 150 200
0.4

0.6

1

1.6

2.5

3.9

Model #14 /Group 1

∆P
P

=
P

P
p
/P

P
i

∆P
P

=
P

P
p
/P

P
i

∆P
P

=
P

P
p
/P

P
i

∆MLD=MLDp-MLDi ∆MLD=MLDp-MLDi

-50 0 50 100 150 200
0.4

0.6

1

1.6

2.5

3.9

Model #23 /Group 2

Point 1
Point 3
Point 4
Point 7
Point 8
Point 10
Point 11

-50 0 50 100 150 200
0.4

0.6

1

1.6

2.5

3.9

Model #12 /Group 3 

-50 0 50 100 150 200
0.4

0.6

1

1.6

2.5

3.9

Model #20 /Group 4

-50 0 50 100 150 200
0.4

0.6

1

1.6

2.5

3.9

Model #11 /Group 4

-50 0 50 100 150 200
0.4

0.6

1

1.6

2.5

3.9

Model #24 /Group 4

Fig. 14. Sensitivity of the ocean-color models to perturbations in mixed-layer depth. The subscripts p and i refer to the perturbation and
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ocean-color models that participated in part 2 (Table 1) that are not depicted here show no response to perturbations in mixed-layer depth.

Model #8/9 only did the sensitivity study for the two Southern Ocean points.
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increase (#3, 20, 21, and 24), an asymptotic-linear
form (#11, 13, 17, 18, and 23), and finally, in model
#19, DPP increases weakly for decreasing negative
DSST to an inflection point (not always 0 �C) after
which it increases more sharply. The Gaussian
shape results from the polynomial function of SST
used in the VGPM and some of its variants;
maximum DPP occurs at SST�20 �C for Model
#2/4, or 5 and at �15 �C for Model #6 (Fig. 16).
The models that have a linear or asymptotic
response consistently have negative DPP for nega-
tive DSST. By contrast, the models with a central
maximum present peak DPP at both positive and
negative DSST for different points (Fig. 16). A
key difference between model responses seems to
be whether DPP increases with positive DSST
(Group 4). The points that were most sensitive
to positive DSST are points with low initial SST
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Fig. 15. Sensitivity of the ocean-color models to perturbations in SST. The subscripts p and i refer to the perturbation and the initial
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(1 and 4), while points with warm SST and shallow
mixed-layer depths (11 and 10, see Table 2) were
more sensitive to negative DSST.

All models, except for #1, increase their PP asym
ptotically in response to positive DPAR (Fig. 17).
For ‘average’ initial PAR values, perturbations lead
to a quasi-linear response following a slope that is
either shallow (model #14) or sharp (model #18).
DPAR exceeding 30Einm�2 day�1 impacts PP by a
factor of 10 in models #12, 18, 13, and 11 for point 8
(northeast Atlantic with high original PAR) and for
point 1 (a Southern Ocean location with very low
original PAR) (Figs. 2 and 19, Table 2). The VGPM
variants are generally insensitive to changes in PAR
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(DPP much less than a factor of two), except for
point 1. The most sensitive models are the HYR
variants (#11, 12, 13) and the WIDR #18.

By far the most important input variable is
chlorophyll concentration (Fig. 18). All models
present a positive quasi-linear relationship for
logarithmic-scale changes. Changing chlorophyll
concentration by a factor of four translates to a
change in PP of about a factor of three in all
models. Higher response is seen in models #11 and
21 of Group 4, while model #23 is less sensitive. In
most models the response is comparable for
different points. However, models #6 (Group 2),
19 and 21 (both of Group 4) show a spread of
responses, with greatest DPP for the points with
lowest original chlorophyll (e.g., points 1 and 10).
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Fig. 17. Sensitivity of the ocean-color models to perturbations in PAR. The subscripts p and i refer to the perturbation and the initial
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Models #6 and 19 use chlorophyll concentration to
determine the maximum photosynthetic rate, lead-
ing to more complex dependencies (Fig. 18).

The sensitivity analysis is by no means a measure
of error. Marine photosynthesis depends on the
input variables, either directly or indirectly. All of
the ocean-color-based PP models discussed here are
driven by chlorophyll concentration and, except for
model #1, PAR. Most models also use SST or
mixed-layer depth to quantify maximum photosyn-
thetic rate and/or to characterize the environmental
conditions experienced by the cells. The range of
sensitivity for the different models impacts their
divergence under different environmental conditions
as well as their ability to reflect temporal variability,
such as heating or increased stratification on a range
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Fig. 18. Sensitivity of the ocean-color models to perturbations in chlorophyll concentration.The subscripts p and i refer to the

perturbation and the initial values, respectively. We focus on a subset of points from Table 2, and on the observed range of variability at

those points. All ocean-color models that participated in part 2 (Table 1) responded to perturbations in chlorophyll concentration. Model

#8/9 only did the sensitivity study for the two Southern Ocean points.
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of temporal or spatial scales. The simplest PP model
(#1), which depends only on chlorophyll concentra-
tion, led to a reasonable global estimate (Fig. 5A)
but excessively high values at low PAR or SST
(Figs. 7, 11, and 13 and Table 4). The dependence on
SST, especially with regards to the formulation of
the maximum photosynthetic rate, seems to impact
the groups, regardless of model complexity. Some of
the groups cannot be completely evaluated as we are
missing contributions from some model participants.

3.8. Correlation between PP and input variables

The pair-wise correlation between primary pro-
duction and the input variables (SST, mixed-layer
depth, PAR, and chlorophyll concentration) for



ARTICLE IN PRESS

Table 4

Outlier models compared to the ocean-color-mean model

P A I S T1 T2 T3 T4 O M E PN STN EQ STS PS

#1 Ha H ha Hb Ha

#8 La

#7 Hb H h ha

#10 Ha H l ha ha

#15 La l

#16 La l

#5 L ha L

#6 L L

#23 Hb

#12 L L L L Lb La

#18 La L L l Lb La

#17 h h l h

#13 h

#24 Lb L hb

#25 Ha H h H Lb L h h

#29 L L

#30 Ha L L

#31 L Lb

#26 Ha

#28 H H H L H

#27 L L H H L l La L H H

The columns A, P, I, and S refer to the Atlantic, Pacific, Indian and Southern Oceans. T1 through T4 correspond to the SST bins, O, M,

and E to oligotrophic, mesotrophic and eutrophic chlorophyll levels. PN and PS correspond to poleward of 40�, north and south,

respectively; STN and STS refer to the subtropical regions (10–40�) north and south, respectively, and EQ to the equatorial region. Within

the table L refers to a low value and H to a high value compared to the multi-model mean. When l or h are in lower case the model was

larger or smaller than the mean model, but by less than a factor of two.
aindicates an anomaly from only May–September and
bindicates anomalies in boreal winter.
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January and July 1998 indicates that the relation-
ship between forcing and PP response is consistent
within groups (Fig. 19). In all ocean-color-based
models PP is positively correlated with chlorophyll
(on average r ¼ 0:65), but correlation is generally
weak or weakly negative with PAR and SST, except
for a few models. Beyond this, the correlations vary
between the different groups.

The highest correlation between chlorophyll and
PP is seen in Groups 1 and 4 (r ¼ 0:87 and 0.8,
respectively), while in Group 2 and 3 they are
correlated at �0.6. The GCM-based models in
Group 5 show essentially no relationship between
PP and the ocean-color chlorophyll concentration,
except for models #31 and 26 at r�0:4. PP estimated
by Group 3 and by models #15, 16, and 23 (the
models of Group 2 that are not VGPM variants) is
positively correlated with PAR (r�0:6); in these
models PAR explains more or an equal amount of
the PP variance as chlorophyll concentration.
Models #13, 21, and 20 (Group 4) are weakly
correlated with PAR as well (r�0:5). SST has a
weak negative correlation with the PP estimated by
the models in Group 1 (although SST is not used by
four of the models), as well as in the VGPM and
several of its variants (Group 2). Conversely it is
more highly correlated (r�0:5) when the correlation
with PAR exceeds 0.6 in both Groups 2 and 3. PP is
uniformly weakly correlated with SST at r�0:2 for
Group 4. By contrast, PP from models #10, 14, and
15 (Group 2) and #12 (which does not use SST) and
18 (Group 3) is positively correlated with SST at
r�0:5. In the remainder of the models SST shows a
weak positive correlation with PP. Mixed-layer
depth is negatively correlated to PP at (r�� 0:2 to
�0:4) or uncorrelated, including the models that
integrate PP to the depth of the mixed layer (#10,
11, and 12). Not surprisingly, the intensity of the
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negative correlation between mixed-layer depth and
PP is directly proportional to the positive correla-
tion with PAR.

In summary, PP from Group 1 is very highly
correlated with chlorophyll concentration, weakly
correlated with PAR, and negatively correlated with
mixed-layer depth and SST. Group 2 can be divided
into two groups. In models #10, 15, 16, and 23, PP
is comparably correlated with chlorophyll concen-
tration and PAR, and negatively correlated with
mixed-layer depth. The remainder of Group 2 are
most highly correlated with chlorophyll and are
uncorrelated to PAR. Group 3 estimates of PP show
similar relationships as models #10, 14, and 15. PP
estimates from Group 4 are, like Group 1, highly
correlated to chlorophyll, but unlike Group 1, are
also positively correlated with PAR and SST. In
principle, Group 5 PP estimates are completely
independent of the PPARR3 input fields since only
two models used them. Therefore, correlations were
generally weaker than with the ocean-color-based
models. Even so, PAR explains most of the modeled
variability in PP, especially in #25, 30 and 31, while
the highest correlation with chlorophyll is r�0:4
(#31, which assimilates SeaWiFS, and 26). Mixed-
layer depth is consistently negatively correlated (at
r ¼ 0:6 for #25) and SST is uncorrelated except for
#28 (r ¼ 0:4).

4. Discussion and conclusions

4.1. Implications of model similarity and divergence

Global PP estimates from the twenty-four ocean-
color-based models range over a factor of two
(Fig. 5A), from values less than 40GtC y�1 (models
#14, 6, and 12) to those exceeding 60GtC y�1 (#15,
17, 13, and 21). HYR variants include the lowest
and highest global estimates. VGPM variants tend
to be average or low, HYR variants and WIDR can
be high or low, and WRDR tend to be average or
high. VGPM variants that use a variant of the sixth-
order polynomial expression tend to be low because
they estimate lower PP rates for SST exceeding
20 �C, which cover a considerable area of the world
ocean (�60%, Table 3).

Presenting model results as a function of devia-
tion from the mean model seems to imply that the
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mean is inherently better. We do not believe this to
be the case; there is no way to quantify model
performance without comparing the output to in
situ data (part 3, Friedrichs et al., in preparation).
We propose instead that the conditions or regions
for which the models differ are those for which it is
more difficult to model photosynthesis. For exam-
ple, model output converges more in regions which
have provided more data for model development
(Fig. 7, Table 4) and those which do not present
HNLC conditions. The most difficult regions are
poleward of 40� in all basins, the equatorial region,
and northern subtropical Indian Ocean. This results
from differences in model output for high chlor-
ophyll concentrations and for extreme SST values
(o10 �C and 420 �C).

The Southern Ocean is unquestionably the most
challenging large basin. Two models and a variant
(#8/9 and 24) were formulated for the Southern
Ocean and parameterized solely with Southern
Ocean data. PP estimated by models #8 and 24 is
lower than that of the mean model (Fig. 7).
However, PP from model #9, which aims to correct
the chlorophyll determination in this region, and
#19, which also included Southern Ocean data in its
formulation and parameterization, are 20–50%
larger than the mean (Fig. 7).

The model anomalies are summarized in Table 4.
Anomalous models in Group 1 tend to overestimate
PP in the Southern Ocean, and under low tempera-
ture and high chlorophyll conditions. Group 1
generally produces low PP (except for eutrophic
conditions, Figs. 8 and 9) and is highly correlated to
the chlorophyll fields (Fig. 19). Group 2 estimates of
PP tend to be higher than average; the anomalous
models generally overestimate PP in the Southern
Ocean, while underestimating PP for SSTo
0 �C and overestimating it for 10 �C4SSTo20 �C
and in mesotrophic waters (Table 4, Figs. 8 and 10).
This group includes the standard VGPM and most
variants for which maximum photosynthetic rates
occur at or below 20 �C (Fig. 18). PP estimated by
four of the models in this group (#10, 15, 16, and 23,
a WIDI, two WIDR and a WRDR) is more
correlated to PAR than to chlorophyll, while the
remaining four are correlated only to chlorophyll
concentration (Fig. 19). PP estimated by Group 3
tends to be low, except for model #17 (Fig. 5).
Group 3 models are quite anomalous compared to
the mean, with a tendency to underestimate PP in
the Southern Ocean and under conditions of low
temperature (o10 �C), and to overestimate PP in
the equatorial region (Table 4). The group average
model is generally low compared to the mean except
in oligotrophic waters (Figs. 6, 8, and 10). These
models are more or equally correlated to PAR than
to chlorophyll (Fig. 19). Models in Group 4 tend
to overestimate PP compared to the mean model
(Fig. 5). PP is high particularly in mesotrophic and
oligotrophic waters and for SST exceeding 20 �C.
All of these models include an exponential function
of SST (Fig. 15). The global PP fields are highly
correlated with chlorophyll concentration and, in
some cases with PAR and, unlike in Group 1,
positively if weakly correlated with SST (Fig. 19).

Finally, Group 5 estimates of PP were comparable
to those of the ocean-color-based models (Fig. 5).
They tend to overestimate PP in the Southern
Ocean, in the equatorial region, and at SST less
than 10 �C and over 20 �C, and to underestimate
high chlorophyll concentrations (Table 4). The
GCM-based model fields are weakly related to the
input fields, except for #25, 30, and 31, which are
correlated with PAR at rX0:6, and #25, which is
negatively correlated with mixed-layer depth
(r ¼ �0:6; Fig. 19). Some of the GCM-based
models restore nutrients to climatology at depth,
which in some comparison studies can increase
global production by �10GtC y�1.

Not surprisingly, the parameterization of the
maximum or optimal photosynthetic rate has large
impact on the variability of the ocean-color-based
models and consequently on the relationship
groups. Specifically the results of the sensitivity
analysis show that the sensitivity to SST perturba-
tions, regardless of model complexity, helps explain
the observed dendrogram (Figs. 16 and 4). The large
divergence in response to SST perturbations illus-
trates the need to improve our understanding, and
ability to model, the effect of temperature on
photosynthesis.

4.2. Strategy for model improvement

Ocean-color-based modeling of primary produc-
tion is an active area of research, and new models
are under development. Ongoing efforts strive to
include more data, from a broader geographic range
and for more diverse conditions, and to improve
model formulation and parameterization. Global
estimation of primary production from ocean color
requires extrapolating sparse point measurements.
Aspects of the photosynthetic process and of the
environmental conditions (e.g., light or nutrients)
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are parameterized as a function of either biogeo-
graphy and/or one or more variables which can be
measured from spaceborne sensors. The problem is
data limited by the amount of (1) representative in
situ measurements and (2) satellite-accessible in-
formation. Strategies which combine remotely-
sensed variables with historical or modeled informa-
tion that can be linked to geography, biome, or
regime are compelling as they hopefully include the
best of both worlds.

Complex models are computer-intensive although
shortcuts can be made via look-up tables or using
simplifying assumptions. The advantage of complex
models is that the photosynthetic process is
represented with greater fidelity and detail, which
allows for greater subtlety in the forcing fields. As
more in situ data, or improved satellite data (such as
information on nutrient fields, phytoplankton size
class or functional groups, or photoadaptive state),
become available they can be exploited within most
of the existing complex formulations.

The advantage of simple models is that they are
very easily implemented. The simplest model
examined (#1), a simple function of chlorophyll
concentration, estimates consistent global and
regional averages production (Fig. 5A). However,
this model cannot reflect temporal or spatial
variability that does not impact the chlorophyll
concentration, including for example, the absence of
light. Seasonal variability is underestimated com-
pared to the other models (best seen in Fig. 13) and
interannual variability is also less than average
(Fig. 5B). Model #1 also overestimates PP in
conditions of low PAR or very low SST, and
consequently at high latitudes (Figs. 7, 11, and 13).
Models that incorporate PAR or SST generate
seasonal and temporal variability that is indistin-
guishable from that of complex models. However,
simple parameterizations are more likely to be
biased by the data used in the formulation.
Competing processes, such as for example the
photosynthetic response to temperature versus the
correlation between temperature and nutrient con-
tent, can easily be confounded or canceled out,
especially when limited input data are available to
parameterize the processes.

Ocean-color-based models need to resolve varia-
bility in addition to average values. Siegel et al.
(2001) compared ten PP models (of varied complex-
ity, including WRDR) with a six-year time series of
PP and bio-optical measurements at the subtropical
Bermuda Atlantic Time Series (BATS) site. PP
models explained �30% of the observed variance.
The best models in reproducing the mean were
unable to capture the variability. They concluded
that the assumptions of steady state and balanced
growth inherent to bio-optical PP models cannot
reproduce the unsteady disturbed environment of
cells in the ocean.

When asked what is needed to improve model
performance, all model developers coincide in
requesting more data, ideally together with ancillary
data such as nutrients and community structure. An
improved understanding of the photosynthetic
process requires measurement of the photosynthetic
parameters in addition to that of primary produc-
tion. Data are especially limited from the Southern
Ocean, the subtropics, HNLC regions, and the
coastal ocean. Initial results for the equatorial
Pacific indicate that the community models are
improving compared to PPARR2: mismatch with in
situ data on the equator decreased by over a factor
of two (Friedrichs et al., in prep). Specific concerns
for future progress include improved formulation of
the quantum yield and of the light field, and more
data on the vertical distribution of chlorophyll.
Comparisons with in situ data invariably bring up
the limitations of discrete 14C uptake measurements
(e.g., Richardson et al., 1984). Our strategy is based
on 14C measurements because of data density, but
thought should be placed on the use of alternate
estimates of photosynthetic rate, such as oxygen
production (e.g., Bender et al., 2000).

As in PPARR1/2, the PPARR3 modeling exercise
includes comparison with in situ data, necessary to
quantify model performance (Friedrichs et al., in
prep). Parts 1 and 2 presented here provide an
unprecedented understanding of the observed simi-
larity among the models and of the conditions under
which they perform differently. The large number of
participating ocean color and GCM-based models
provides an expanded perspective on the range of
model performance. We have found that the form in
which SST is used impacts the relationship between
model output. Future plans include a more com-
prehensive in situ comparison, including coastal
regions, the Southern Ocean, Arabian Sea, and a
more detailed examination of temporal variability
in subtropical regions (i.e. the Bermuda and Hawaii
time series stations). As in PPARR3, we anticipate
model development and refinement, and hope to
perform ongoing comparison of model perfor-
mance, such as shown here, independently of the
in situ data.
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Appendix

Model #1: This model estimates PP as
ffiffiffiffiffiffiffi
chl
p

(Eppley et al., 1985). It ignores any external forcing
or changes in physiological state. While other
models introduce complexity from geography or
forcing fields, this model assumes that the standing
stock is sole determinant of photosynthetic rate. All
biomass performs identically.

Models #2/3/4: The vertically generalized produc-
tion model (VGPM) developed by Behrenfeld and
Falkowski (1997a) is one of the most widely known
and used WIDI PP models. The maximum observed
photosynthetic rate within the water column, PB

opt, is
obtained as a seventh-order polynomial of SST.
Companion model #3 only differs from #2 in that
PB
opt is estimated as an exponential function of

temperature following Eppley (1972). Model #4 is
identical to Model #2, but was run independently as
a former standard MODIS PP product.

Model #5: This VGPM variant estimates the total
integrated chlorophyll concentration from a con-
tinuous function (Morel and Berthon, 1989) rather
than in two steps as in Model #2; the euphotic depth
(attenuation coefficient) is defined following Morel
and Maritorena (2001).

Model #6: This VGPM variant formulates PB
opt as

a function of SST and chlorophyll concentration
(Kameda and Ishizaka,, in press). The model is
based on the assumptions that changes in chlor-
ophyll concentration depend on the abundance of
large phytoplankton and that chlorophyll-specific
productivity is inversely proportional to phyto-
plankton size.
Model #7: This VGPM defines PB
opt by multi-

plying a theoretical maximum PB
opt by nutrient and

light limitation factors obtained from a globally-run
ecosystem model (Moore et al., 2002ba). It assumes
that PB

opt depends more on available nutrients and
light than on SST.

Models #8/9: This VGPM variant was developed
for the Southern Ocean and was only run south of
50 �S (Dierssen and Smith, 2000; Dierssen et al.,
2000). It uses the average PB

opt measured in the study
area, as no relationship was found between envir-
onmental observations and PB

opt. Model #8 uses the
standard chlorophyll concentration as input. #9
answers the challenges to satellite determination of
chlorophyll in the Southern Ocean by transforming
the SeaWiFS value with an empirical relationship
observed between ocean color and in situ measure-
ments.

Model #10: This model is based on the formula-
tion obtained through dimensional analysis by Platt
and Sathyendranath (1993). The photosynthetic
parameters (PB

max and the photo-acclimation para-
meter Ek) are assigned by combining a temperature-
dependent relationship for the maximum growth
rate (Eppley, 1972) with dynamic provinces derived
from fuzzy logic (as in Moore et al., 2001) to
retrieve the carbon to chlorophyll ratio following
the empirical relation of Cloern et al. (1995).
Primary production is integrated to the mixed-layer
depth.

Model #11: This model is the standard Howard,
Yoder, Ryan (HYR) model (Howard and Yoder,
1997). Maximum growth rate is parameterized as a
function of SST according to Eppley (1972).
Primary production is integrated to the mixed-layer
depth rather than to the euphotic depth.

Model #12: This HYR variant uses mixed-layer
depth information to quantify the photoadaptive
variables within the euphotic zone, as well as to
address water column partitioning of primary
production relative to euphotic depth.

Model #13: This HYR variant integrates photo-
synthesis to the euphotic depth as defined in
Behrenfeld and Falkowski (1997a) rather than to
the mixed-layer depth (Carr, 2002).

Model #14: This model uses an artificial neural
network to perform a generalized nonlinear regres-
sion of PP on several predictive variables,including
latitude, longitude, day length, mixed-layer depth,
SST, PB

opt (computed according to the VGPM),
PAR, and surface chlorophyll (Scardi, 2000, 2001).
Since there are insufficient data to calibrate the
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neural network on a global scale, PP values from
other models (VGPM, HYR, and the MOD-27
formulation (Esaias, 1996)) were considered mea-
surements where there were none.

Models #15/16/17: These three models are WIDR
models. Model #14 uses Behrenfeld and Falkowski
(1997a) to estimate PB

opt. The surface spectral
irradiance, estimated with Gregg and Carder
(1990), is used to obtain a spectrally weighted
depth-averaged light attenuation coefficient within
the mixed layer. Surface irradiance is converted
from cosine to scalar. Companion model #15, in
contrast, does not convert the irradiance from
cosine to scalar. Model #16 differs from #14 by
using the PB

max function from Antoine and Morel
(1996).

Model #18: This WIDR model estimates depth-
dependent photosynthesis as a function of chlor-
ophyll concentration, temperature, and PAR. The
depth-distribution of PAR is determined by surface
chlorophyll concentration while the depth-distribu-
tion of chlorophyll is given by the PAR profile and
the surface chlorophyll concentration. The carbon
fixation rate is empirically estimated as a function of
PAR and temperature (Asanuma et al., 2003).

Model #19: This WIDR model is based on
chlorophyll-specific phytoplankton absorption,
which is parameterized empirically as a function of
SST (Marra et al., 2003). Absorption by photosyn-
thetic pigments is distinguished from total absorp-
tion; the former is used to calculate productivity and
the latter is used to estimate light attenuation in the
water column. The quantum efficiency is obtained
from a hyperbolic tangent and a constant fmax. The
depth profile of chlorophyll is estimated assuming a
gaussian shape with parameters determined by the
surface value. The attenuation coefficient of chlor-
ophyll is also SST-dependent.

Model #20: This WRDR model (Morel, 1991) is
based on measurements of photosynthesis versus
irradiance and is formulated using chlorophyll-
specific wavelength-resolved absorption and quan-
tum yield. Temperature dependence is given by the
parameterization of PB

max which follows Eppley
(1972). The chlorophyll profile is determined to be
well-mixed or stratified according to the ratio of
mixed-layer depth and the euphotic depth, and if
stratified, assigned a gaussian profile as in Morel
and Berthon (1989). Mean photo-physiological
parameters are from Morel et al. (1996). The model
is run in its ‘satellite’ version (Antoine et al., 1996),
where PP is the product of integral biomass, the
daily irradiance, and c� (the cross-section of algae
for photosynthesis per unit of areal chlorophyll
biomass). Lookup tables for c� were previously
generated using the full WRDR model, and are used
to increase computational efficiency.

Model #21: This model is an implementation of
the Morel (1991) WRDR model in which the depth
distribution of chlorophyll is assumed constant
throughout the water column. The broadband
incident PAR is spectrally resolved using a look-
up-table generated from a single run of the Gregg
and Carder (1990) marine irradiance model where
the effects of clouds and aerosols are essentially
linearly scaled. The model uses 60-min time and
10-m depth steps at 5-nm wavelength resolution
when run using the global datasets.

Model #22: This WRDR follows the model of
Platt and Sathyendranath (1988) as implemented at
global scale by Longhurst et al. (1995). It uses
biogeographical provinces to define the values of the
parameters to describe the light-photosynthesis
curve and the chlorophyll depth profile. Photosyn-
thetic parameters were updated using an extended
data set provided by the Bedford Institute of
Oceanography and an extensive literature review.
Spectral surface irradiance is first estimated inde-
pendently with the model of Gregg and Carder
(1990) combined with a correction for cloud cover
and then scaled to match the PAR values provided
for the exercise. Spectral light is subsequently
propagated in the water column with a bio-optical
model with updated parameterizations of the
inherent optical properties. All changes to the
original implementation of Longhurst et al. (1995)
are detailed by Mélin (2003).

Model #23: This WRDR model derives spectral
irradiance from the PAR using Tanré et al. (1990).
Quantum yield is parameterized from a maximum
value and a light dependent term (Waters et al.,
1994; Bidigare et al., 1992). The chlorophyll profile
is assumed vertically uniform. A sigmoidal tem-
perature dependence was applied to the maximum
quantum yield, based on a vertical profile of
temperature derived from SST and mixed-layer
depth.

Model #24: This WRDR was developed for the
Southern Ocean (Arrigo et al., 1998), but has been
applied to the global fields in this study. It is based
on spectrally varying chlorophyll absorption and a
scaling of the photo-acclimation parameter Ek to
the daily mean irradiance. The rate of production is
determined by temperature and by light limitation.
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Chlorophyll is assumed uniform in the mixed layer
and decreases exponentially at greater depths.

Model #25: The Pelagic Interactions Scheme for
Carbon and Ecosystem Studies (PISCES) ocean
biogeochemistry model has three nutrients (Fe, P,
and Si), and two size classes each of phytoplankton
and zooplankton, as well as detritus and semi-labile
dissolved organic matter (Aumont et al., 2003; Bopp
et al., 2003). PISCES is coupled online to the OPA
general circulation model (Madec et al., 1998). OPA
has a horizontal resolution of 2�; the latitudinal
resolution is enhanced to 0.5� at the equator and
the pole. It resolves 30 vertical levels at 10-m
intervals in the top 100m. It is forced with daily
averaged values of winds and fluxes from the
National Centers for Environmental Prediction
(NCEP) reanalysis.

Model #26: This ecosystem model (Moore et al.,
2002a,b) has four nutrients (nitrogen, phosphorus,
silicon, and iron) and three phytoplankton groups
(diatoms, diazotrophs, and a generic small phyto-
plankton class). Growth rates can be limited by
available nutrients and/or light levels. The diatoms
can also be limited by silicon and the diazotrophs
are not nitrogen-limited. This model is run as
multiple 1-D mixed layer models, forced here by
the provided mixed-layer depth.

Model #27: This 11-compartment North Pacific
Ecosystem Model Used for Regional Oceanography
(NEMURO), developed by the North Pacific
Marine Science Organization (Eslinger et al.,
2000), has two size classes each of phytoplankton
and zooplankton, and two nutrients: nitrate and
silicate. The coupled GCM and ecosystem model is
described by Aita et al. (2003). The horizontal
resolution is 1 by 1� over a global domain not
including the Arctic Ocean.

Model #28: This biogeochemical model estimates
new production by restoring surface nitrate to the
monthly World Ocean Atlas 2001 data synthesis
(http://www.nodc.noaa.gov/OC5/WOA01/pr-woa01.
html) and then applies a spatially dependent f-ratio
to obtain primary production. Climatological forcing
was used.

Model #29: This PISCES model variant, PISCES-
T, has improved parameterization of meso-zoo-
plankton growth and mortality rates, and a
temperature-dependent degradation of particulate
organic matter (Buitenhuis et al., 2006). As in #25, it
is coupled to the OPA and is forced by NCEP
reanalysis. This model version does not restore to
climatological nutrients below the mixed layer.
Model #30: The NASA Ocean Biogeochemical
Model (NOBM) simulates four phytoplankton
groups (diatoms, chlorophytes, cyanobacteria, and
coccolithophores) and four nutrients (nitrate, am-
monium, silica, and iron) (Gregg et al., 2003). The
model is approximately 0.8� resolution with 14
vertical layers in quasi-isopycnal configuration.
The model was forced by monthly mean winds
and shortwave radiation from NCEP for 1998 and
1999.

Model #31: In this NOBM variant SeaWiFS
chlorophyll data were assimilated for 1998 and
1999. Assimilation occurred on a daily basis, using
the Conditional Relaxation Analysis Method (Oort,
1983). The assimilation affected the model repre-
sentations of total chlorophyll (sum of the four
phytoplankton groups), but not the individual
community distributions directly. Primary produc-
tion was affected by the change in total chlorophyll,
as well as by indirect effects such as subsurface
irradiance resulting from absorption and scattering
by the changed chlorophyll field.
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Bidigare, R.R., Prézelin, B.B., Smith, R.C, 1992. Bio-optical

models and the problems of scaling. In: Primary Productivity

and Biogeochemical Cycles in the Sea. Plenum Press,

New York, pp. 175–212.

Bopp, L., Kohfeld, K., Le Quéré, C, Aumont, O., 2003. Dust
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