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Abstract The oceans cover over 70% of the earth’s surface and the life inhabiting the

oceans play an important role in shaping the earth’s climate. Phytoplankton,

the microscopic organisms in the surface ocean, are responsible for half of

the photosynthesis on the planet. These organisms at the base of the food

web take up light and carbon dioxide and fix carbon into biological structures

releasing oxygen. Estimating the amount of microscopic phytoplankton and

their associated primary productivity over the vast expanses of the ocean is

extremely challenging from ships. However, as phytoplankton take up light

for photosynthesis, they change the color of the surface ocean from blue

to green. Such shifts in ocean color can be measured from sensors placed

high above the sea on satellites or aircraft and is called “ocean color remote

sensing.” In open ocean waters, the ocean color is predominantly driven by

the phytoplankton concentration and ocean color remote sensing has been

used to estimate the amount of chlorophyll a, the primary light-absorbing

pigment in all phytoplankton. For the last few decades, satellite data have

been used to estimate large-scale patterns of chlorophyll and to model primary



productivity across the global ocean from daily to interannual timescales. Such

global estimates of chlorophyll and primary productivity have been integrated

into climate models and illustrate the important feedbacks between ocean

life and global climate processes. In coastal and estuarine systems, ocean

color is significantly influenced by other light-absorbing and light-scattering

components besides phytoplankton. New approaches have been developed to

evaluate the ocean color in relationship to colored dissolved organic matter,

suspended sediments, and even to characterize the bathymetry and composition

of the seafloor in optically shallow waters. Ocean color measurements are

increasingly being used for environmental monitoring of harmful algal blooms,

critical coastal habitats (e.g., seagrasses, kelps), eutrophication processes, oil

spills, and a variety of hazards facing the coastal zone.
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17 Glossary

18 Absorption, a(l) The fraction of a collimated beam of

19 photons in a particular wavelength (l), which is

20 absorbed or scattered per unit distance within the

21 medium (units 1/length or m�1). Photons which

22 are absorbed by ocean water alter the spectral dis-

23 tribution of light that can be observed remotely.

24 Apparent optical properties (AOP) Optical proper-

25 ties which depend primarily on the medium itself

26 but have a small dependence on the ambient light

27 field. Typically, AOPs are derived from measure-

28 ments of the ambient light field, particularly

29 upwelling and downwelling radiance and irradi-

30 ance. Principal AOPs include irradiance reflectance,

31 remote sensing reflectance, and the diffuse attenu-

32 ation coefficients.

33 Backscattering, bb(l) Light of a particular wavelength

34 (l) that is scattered in a direction 90–180� away

35 from its original path (i.e., backward hemisphere).

36Backscattered light is what is measured as ocean

37color in remote sensing, namely, downward propa-

38gating sunlight that has been redirected back

39toward the sea surface and out into the atmosphere.

40For natural waters, only a few percent of the light

41entering the ocean is backscattered out.

42Colored or chromophoric dissolved organic material

43(CDOM) CDOM is yellow-brown in color and

44absorbs primarily ultraviolet and blue light decreas-

45ing exponentially with increasing wavelength. Pro-

46duced from the decay of plant material, it consists

47mainly of humic and fulvic acids and is operation-

48ally defined as substances that pass though a 0.2 mm
49filter.

50Diffraction Light which propagates or bends along

51the boundary of two different mediums with dif-

52ferent indices of refraction.

53Diffuse attenuation coefficient, K(l) A normalized

54depth derivative that describes the change of light,

55plane incident irradiance, with depth. The rate of

56diminution of sunlight with depth underwater is

57typically logarithmic.

58Index of refraction (real), n The speed of light in

59a medium, cmed, relative to the speed of light in

60a vacuum, cv expressed as n ¼ cv=cmed . The real

61index of refraction determines the scattering of

62light at the boundary between two different

63mediums and within the medium from thermal

64and molecular fluctuations. The relative refractive

65index, n0, is the ratio of the speed of light within the

66medium, cm, to the speed of light within a particle,

67cp. As n
0 deviates from 1, the scattering caused by

68the particle increases for a general size and shape

69particle (e.g., minerals and microbubbles).

70Inherent optical properties (IOP) Optical properties

71which depend on the medium itself and are inde-

72pendent of the ambient light field. IOPs are defined

73from a parallel beam of light incident on a thin layer

74of the medium. Two fundamental IOPs are the

75absorption (a) and the volume scattering
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76 coefficient (b), which describe how light is either

77 absorbed or directionally scattered by ocean water.

78 Irradiance (downward planar), Ed(l) The incremen-

79 tal amount of radiant energy per unit time (W)

80 incident on the sensor area (m�2) from all solid

81 angles contained in the upper hemisphere,

82 expressed per unit wavelength of light (l, nm�1).

83 This is used to measure the amount of spectral

84 energy from the sun reaching the sea surface.

85 Irradiance reflectance, R(l) The ratio of the upwell-

86 ing irradiance, Eu(l), to the plane downwelling

87 irradiance, Ed(l), in different wavelengths (l).
88 Optical depth, z A measure of how opaque a medium

89 is to radiation. The optical depth is a function of the

90 geometric depth and the vertical attenuation

91 coefficient.

92 Optically shallow waters An aquatic systemwhere the

93 spectral reflectance off the bottom contributes to

94 radiance measured above the sea surface and is

95 defined by the water clarity, bottom depth, and

96 bottom composition.

97 Photosynthetically available radiation (PAR) The

98 integrated photon flux (photons per second per

99 square meter) within the 400–700 nm wavelength

100 range at the ocean surface. PAR is the total energy

101 available to phytoplankton for photosynthesis and

102 is reported in units of Q m�2 s�1, where Q is

103 quanta, or in mE m�2 s�1, where E is Einsteins.

104 Radiance, L(l) The incremental amount of radiant

105 energy per unit time (in Watts) incident on the

106 sensor area (m�2) in a solid angle view (sr�1) per

107 unit wavelength (l) of light (nm�1). A satellite

108 measures radiance.

109 Reflection At the boundary of two different mediums

110 with different indices of refraction, a certain

111 amount of radiation is returned at an angle equal

112 to the angle of incidence.

113 Refraction The direction of light propagation

114 changes, or is bent, at the boundary between two

115 mediums with different indices of refraction. The

116 refracted light bends toward the normal boundary

117 when the index of refraction increases from one

118 medium to another and away from the normal

119 boundary when the index of refraction decreases

120 from one medium to another.

121 Remote sensing reflectance, Rrs(l) A specialized ratio

122 used for remote sensing purposes formulated as the

123ratio of the spectral water-leaving radiance, Lw(l),
124to the plane irradiance incident on the water, Ed(l).
125It represents the spectral distribution of sunlight

126penetrating the sea surface that is backscattered

127out again and potentially measured remotely. The-

128oretically, it is proportional to spectral backscatter-

129ing bb(l) and inversely proportional to absorption

130a(l) of the surface water column.

131Water-leaving radiance, Lw(l) The component of the

132radiance signal measured above the water

133consisting of photons that have penetrated the

134water column and been backscattered out through

135the air-sea interface. It does not include photons

136reflected off the sea surface, also called sun glint.

137Definition of the Subject, Relevance, Motivation

138The oceans cover over 70% of the earth’s surface and

139the life inhabiting the oceans play an important role in

140shaping the earth’s climate. Phytoplankton, the micro-

141scopic organisms in the surface ocean, are responsible

142for half of the photosynthesis on the planet. These

143organisms at the base of the food web take up light

144and carbon dioxide and fix carbon into biological

145structures releasing oxygen. Estimating the amount of

146microscopic phytoplankton and their associated pri-

147mary productivity over the vast expanses of the ocean is

148extremely challenging from ships. However, as phyto-

149plankton take up light for photosynthesis, they change

150the color of the surface ocean from blue to green. Such

151shifts in ocean color can be measured from sensors

152placed high above the sea on satellites or aircraft and

153is called “ocean color remote sensing.” In open ocean

154waters, the ocean color is predominantly driven by the

155phytoplankton concentration and ocean color remote

156sensing has been used to estimate the amount of chlo-

157rophyll a, the primary light-absorbing pigment in all

158phytoplankton. For the last few decades, satellite data

159have been used to estimate large-scale patterns of chlo-

160rophyll and to model primary productivity across the

161global ocean from daily to interannual timescales. Such

162global estimates of chlorophyll and primary productiv-

163ity have been integrated into climate models and illus-

164trate the important feedbacks between ocean life and

165global climate processes. In coastal and estuarine sys-

166tems, ocean color is significantly influenced by other

167light-absorbing and light-scattering components

2 R Remote Sensing of Ocean Color
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168 besides phytoplankton. New approaches have been

169 developed to evaluate the ocean color in relationship

170 to colored dissolved organic matter, suspended sedi-

171 ments, and even to characterize the bathymetry and

172 composition of the seafloor in optically shallow waters.

173 Ocean color measurements are increasingly being used

174 for environmental monitoring of harmful algal blooms,

175 critical coastal habitats (e.g., seagrasses, kelps), eutro-

176 phication processes, oil spills, and a variety of hazards

177 facing the coastal zone.

178 Introduction

179 Remote sensing of ocean color allows for the determi-

180 nation of phytoplankton biomass and carbon fixation

181 over the global ocean. From these data, approximately

182 half of the global carbon fixation is estimated to occur

183 by ocean phytoplankton, accounting for roughly 50 Gt

184 C year�1 [1, 2]. Phytoplankton are the base of the

185 marine food web, responsible for producing organic

186 carbon from carbon dioxide. The premise behind

187 ocean color remote sensing is to relate the intensity

188 and spectral distribution of visible light reflected out

189 of the water (“ocean color”) to the biological and

190 biogeochemical processes that influence the optical

191 properties of the water column (“bio-optical proper-

192 ties”) [3]. The distribution, abundance, and temporal

193 variation in various biological, physical, and chemical

194 processes can be observed synoptically from local and

195 regional to global spatial scales from sensors placed on

196 satellites or aircraft. Ocean color remote sensing pro-

197 vides long-term, continuous time series of phytoplank-

198 ton biomass and productivity data necessary for global

199 carbon cycle and climate research [4–6], but the uses of

200 ocean color data are increasingly diverse from military

201 to environmental monitoring applications [7].

202 Phytoplankton have a marked influence on the

203 subsurface and emergent light field [8]. The light

204 harvesting systems of phytoplankton, including the

205 chlorophyll a pigment which is ubiquitous among phy-

206 toplankton species, absorb light across the visible spec-

207 trum and influence the color of the near-surface ocean

208 [9]. An increase in absorption, or reduction in reflec-

209 tance, in the blue relative to the green portion of the

210 spectrum can be empirically related to chlorophyll a

211 concentration [10]. In other words, as phytoplankton

212 are added to the water column, more blue light is

213absorbed and the reflected color changes from blue to

214green. The advent of space-based ocean color sensors in

2151978 with NASA’s Coastal Zone Color Scanner (CZCS)

216and the follow on Sea-viewing Wide Field of View

217Sensor (SeaWiFS) in 1997 greatly enhanced the under-

218standing of phytoplankton distribution and concentra-

219tion in the ocean [11]. Satellite ocean color imagery

220provides estimates of phytoplankton abundance across

221all ocean basins (Atlantic, Pacific, Indian, Arctic, and

222Southern Oceans) and quantifies the variability from

223seasonal to interannual timescales.

224Over the last several decades, ocean color has

225expanded beyond chlorophyll and a whole field has

226emerged to study how the nature of the upwelling

227light field changes as a function of the quantity and

228composition of a variety of constituents in the near-

229surface ocean, including biogenic and nonbiogenic

230inorganic material, nonliving and living organic mate-

231rial (i.e., phytoplankton, bacteria and viruses),

232dissolved substances, and benthic habitats. Ocean

233color research has sought to define the fundamental

234relationship between the inherent optical properties of

235the ocean, or the absorption and scattering properties

236of the constituents, and water-leaving radiance. With

237improved technology, including radiometers with bet-

238ter spectral resolution, calibration, and a high signal-

239to-noise ratio, and in situ optical instrumentation,

240which provided a description of the optical properties

241of oceanic constituents, biogeochemical parameters are

242being estimated with greater accuracy and precision.

243Ocean color remote sensing has moved beyond estima-

244tions of chlorophyll alone and is now used to measure

245total suspended sediment, colored dissolved organic

246material, particulate inorganic carbon, and phyto-

247plankton functional groups, as well as critical habitats

248and hazards influencing pelagic and coastal waters.

249Optical Properties of the Water Column

250Scattering and absorption of photons, the basic unit of

251light energy, in the surface ocean determines the inten-

252sity and spectral shape of the water-leaving light signal

253measured at an ocean color sensor. Photons that prop-

254agate into the ocean interact with water molecules

255dissolve and particulate matter and are either absorbed

256or scattered. Because most of the light is propagated

257downward into the water column, only a small amount

3RRemote Sensing of Ocean Color
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258 of the signal is scattered back out of the water column

259 and measured remotely. The bulk optical properties of

260 water are used to describe how the spectral and direc-

261 tional distribution of photons is altered within the

262 natural water body.

263 Inherent Optical Properties

264 The absorption and scattering properties of water mol-

265 ecules and the dissolved and particulate constituents

266 within the water are called inherent optical properties

267 (IOPs). IOPs do not depend on the ambient light

268 conditions, but are a function of the medium alone.

269 The two IOPs commonly used for remote sensing pur-

270 poses include the absorption (a) and scattering (b)

271 coefficients, which refer to the fraction of incident

272 light, a single, narrow, collimated beam of photons,

273 which is absorbed or scattered per unit distance within

274 the medium (units 1/length or m�1). The scattering

275 coefficient stems from the volume scattering function

276 (b), which is the differential scattering cross section per

277 unit volume per solid angle, and is calculated as the

278 integral over all directions (0–180�). The attenuation

279 coefficient (c) accounts for the reduction in light inten-

280 sity due to absorption and scattering processes

281 combined.

282 Both absorption and scattering processes can

283 change the color of the ocean as observed from

284 a satellite. Oceanic constituents that are primarily

285 responsible for absorption of photons include water

286 molecules, phytoplankton pigments, particulate detri-

287 tus, and colored or chromophoric dissolved organic mate-

288 rial (CDOM) (Fig. 1). Pure water is increasingly

289 effective at absorbing light at wavelengths greater than

290 550 nm and absorbs minimally in the blue and green

291 portion of the visible spectrum. Conversely, CDOM,

292 operationally defined as all of the colored material that

293 passes through a 0.2 mmfilter, absorbs maximally in the

294 ultraviolet and blue portion of the spectrum, decreas-

295 ing exponentially with wavelength at a rate which is

296 related to the composition, or degradation state, of the

297 material. CDOM is generally comprised of humic and

298 fulvic acids and small colloidal material released

299 through the degradation of plant tissue, whether in

300 soils or in water [12, 13]. Commonly, CDOM is

301 modeled with an exponential function, but

302 a hyperbolic model may be more accurate [14].

303Nonliving particulate material, called detritus or

304tripton, absorbs in a manner similar to CDOM and

305the two components are difficult to differentiate

306spectrally.

307Phytoplankton absorb light in a complex manner

308related to the composition and quantity of their pho-

309tosynthetic pigments, molecules structured to absorb

310photons within the visible range of 400–700 nm,

311dubbed photosynthetically available radiation or PAR.

312There are three distinct classes of pigments, namely,

313chlorophylls, carotenioids, and biliproteins. All phyto-

314plankton contain chlorophyll a and most contain chlo-

315rophylls b and/or c. Chlorophylls a, b, and c have two

316strong absorption bands in the red and blue portions of

317the spectrum. Chlorophyll a absorption is low in the

318green (450–650 nm) portion of the spectrum. The

319presence of chlorophylls b and c extend the range of

320light available for photosynthesis further into both the

321short- and long-wavelength regions. Carotenoid pig-

322ments, of which there are many types (i.e., b-carotene),
323extend absorption further yet into the short-

324wavelength end of the green portion of the spectrum.

325Finally, some phytoplankton contain red or blue pig-

326ments called biliproteins, which are divided into classes

327based on the position of their absorption peaks. The

328phytoplankton absorption coefficient describes the

329spectral absorption for natural waters comprised of

330mixtures of phytoplankton and has been commonly

331parameterized by chlorophyll concentration and dom-

332inant cell size [15, 16].

333Scattering processes, which include refraction,

334reflection and diffraction, occur at the boundary of

335a particle with a different index of refraction, the ratio

336of the speed of light in the surrounding medium to the

337speed of light within the particle, than the surrounding

338medium. Scattering is predominantly elastic, the energy

339of the photon is conserved, but the direction of propa-

340gation is altered. Rather than reducing light, scattering

341works to inhibit the straight-path vertical penetration of

342light. The total scattering coefficient (b) can be

343subdivided into light which scatters in the forward

344direction (bf) (0–90
�) and the backward direction (bb)

345(90–180�) relative to the unattenuated beam. The

346backscattered light is the radiance that is scattered out

347of the water column and measured by a sensor as

348“ocean color.” The magnitude of bb is a function of

4 R Remote Sensing of Ocean Color
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349 the concentration, composition (i.e., index of refrac-

350 tion), shape, and size of particles [17].

351 Water molecules, salts, organic and inorganic par-

352 ticles, and bubbles provide strong contributions to

353 light scattering in the ocean. Scattering by pure water

354 is the result of density fluctuations from the random

355 motion of water molecules and has a wavelength

356 dependence of l�4 [18]. The presence of salt increases

357 scattering, where pure seawater, with a salinity of

358 35–38‰, scatters 30% more light than pure water

359 devoid of salt. When particles are present, as in natural

360 waters, scattering increases markedly [19]. The scatter-

361 ing coefficient for the clearest surface waters is an order

362 of magnitude greater than that of pure seawater. Parti-

363 cles that are large relative to the wavelength of light

364 scatter mainly in the forward direction via diffraction,

365 where photons propagating along the particle bound-

366 ary change their direction in response to the boundary

367 in a manner proportional to the cross-sectional area of

368 the particle. Photons entering large particles are likely

369 absorbed. Conversely, small particles mainly reflect and

370 refract light in a manner proportional to the

371 volume of the particle. Small particles with an index

372 of refraction that deviates markedly from 1, including

373 micron (10�6 m)-sized calcium carbonate plates or

374 coccoliths generated by coccolithophorid phytoplank-

375 ton (n = 1.25) or bubbles (n = 0.75), are highly efficient

376 at scattering light in the backward direction [17].

377 The processes of absorption and scattering are con-

378 sidered additive, therefore the sum of the contribution

379 of each constituent determines the magnitude of the

380 total coefficients at and bt. As such, IOPs are separated

381 into operationally defined components which com-

382 prise a and bb:

at ¼ aw þ aph þ ad þ ag ; and

bbt ¼ bbw þ bbp

383 where the subscripts correspond to water (w), algal or

384 phytoplanktonic (ph), non-algal or detrital (d) matter,

385 and dissolved material, originally termed “gelbstoff ”

386 (g). Dissolved material does not scatter light and the

387 contributions of both algal and non-algal matter are

388 generally consolidated into backscattering from partic-

389 ulate (p) material. Recent advances in optical instru-

390 mentation have allowed for the measurement of

391absorption and scattering properties in situ and

392contributed to advances in ocean color remote

393sensing [20].

394Apparent Optical Properties

395Measurements of how light of different wavelengths

396attenuates with depth in the water column have been

397the historical basis of optical oceanography [21] fol-

398lowing from the use of white Secchi disks to water

399clarity. The properties that can be derived from mea-

400surements of ambient light in the water column are

401generally termed “apparent” optical properties (AOP)

402because they operate as optical properties describing

403the fundamental properties of the medium with only

404a slight dependence on the angular distribution of the

405light field. Spectral radiance, L, is the fundamental

406radiometric quantity which describes the spatial, tem-

407poral, directional, and wavelength-dependent structure

408of the light field in units of radiant flux per area per

409wavelength per solid angle (W m�2 nm�1 sr�1) [18].

410Planar downwelling irradiance, Ed, is a measure of the

411radiant energy flux incident on the surface from all

412directions or solid angles contained in the upper hemi-

413sphere, with units of radiant flux per unit area per unit

414wavelength (Wm�2 nm�1). The same concept, applied

415to the lower hemisphere, describes upwelling irradi-

416ance, Eu. The ratio of the upwelling to downwelling

417irradiance yields irradiance reflectance, R, a measure of

418how much light of a certain wavelength entering the

419ocean is scattered backward by ocean molecules

420and particles.

421For remote sensing purposes, only the radiance

422from a specific direction is measured by a sensor, not

423the entire upwelling irradiance. Hence, the color is

424parameterized as remote sensing reflectance (Rrs, sr
�1),

425which is the ratio of water-leaving radiance to

426downwelling irradiance. The term “water-leaving radi-

427ance” represents the radiance signal emerging from the

428water column in a nadir direction and specifically

429excludes those upward-directed photons that have

430only reflected off the sea surface and not penetrated

431the water column (i.e., sun glint). The term Rrs repre-

432sents the proportion of the downwelling light incident

433on the water surface that is returned through the air-

434water interface in the nadir direction due to differential

5RRemote Sensing of Ocean Color
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435 absorption and scattering processes. The parameter Rrs

436 is proportional to backscattering coefficient and

437 inversely proportional to absorption coefficient and

438 can be approximated as:

Rrs ¼ f

Q

bb

ða þ bbÞ
439 where the ratio f/Q is related to the bidirectionality of

440 the light field and varies from 0.09 to 0.11 for most

441 remote sensing applications [22].

442 The rate of change of radiance and irradiance with

443 depth, known as the vertical diffuse attenuation coeffi-

444 cient (K; m�1), is another principle AOP. Irradiance

445 and radiance decrease approximately exponentially

446 with depth. The downward diffuse attenuation coeffi-

447 cient, Kd, the rate of decrease in downwelling irradi-

448 ance, Ed(0), with depth (z),

EdðzÞ ¼ Edð0Þe�Kdz

449 is commonly used in biological studies and is closely

450 linked to the absorption coefficient of the medium

451 specifically. The optical depth, z, corresponding to

452 any given physical depth is defined below:

z ¼ Kdz

453 Optical depths frequently used by biologists include

454 2.3 and 4.6, corresponding to the 10% and 1% light

455 levels, respectively. Also, the portion of the surface

456 water column contributing 90% of the water-leaving

457 radiance has a depth, z, described by z ¼ 1=Kd [12].

458 The radiative transfer equation is the mathematical

459 formulation that defines the relationship between the

460 optical properties of natural water bodies [18] and is

461 the basis for the semi-analytical models used in ocean

462 remote sensing.

463 Basics of Ocean Color Remote Sensing

464 Many challenges are inherent to remote sensing of

465 ocean color. In comparison to land, the ocean target

466 is dark, with an albedo of only a few percent. This

467 means that most of the light that enters the water is

468 propagated downward into the water column and only

469 a few percent is scattered back out again. This is quite

470 different from land and ice surfaces which have a much

471 higher albedo. Most ocean color sensors are passive in

472 that they measure only the radiation that originates

473from the sun, as opposed to active sensors that produce

474and sense their own stream of light (e.g., Light Detec-

475tion and Ranging or LIDAR). Viewed from space,

476moreover, the ocean is observed through a thick atmo-

477sphere which reflects sunlight back to the sensor and is

478significantly brighter in the visible wavelengths than

479the water itself. In technical terms, this is quantified

480as a low signal-to-noise ratio where the “signal” is the

481light reflected from within the ocean and the “noise” is

482light reflected from the atmosphere and sea surface.

483This section outlines the platforms, calibration, atmo-

484spheric correction, and levels of data processing critical

485for successful ocean color remote sensing.

486Sensors and Platforms

487Ocean color sensors can be mounted on space-based

488satellites or on suborbital platforms like aircraft or

489unmanned aerial vehicles. The spatial and temporal

490sampling and the questions that can be addressed

491with the data depend on the type of platform

492employed. Most current ocean color sensors have

493a wide field of view, which translates to a wide sampling

494swath, and are mounted on sun synchronous polar-

495orbiting satellites (e.g., CZCS, SeaWiFS, MODIS Aqua

496and Terra). These sensors have the potential to provide

497global coverage of the earth roughly every 3 days at the

498equator and more frequently at the poles. However,

499clouds obscure the ability of the sensor to view the

500ocean color and, in reality, temporal sampling for any

501given region is much less. Data are frequently averaged

502over longer time periods to produce weekly, monthly,

503and seasonal composite images of the global ocean

504(Fig. 2). The spatial resolution is also limited nominally

505to 1 km pixel widths (and down to 500 m for select

506channels) in these polar-orbiting sensors in part

507because of limitations in the signal-to-noise ration

508inherent to the dark ocean surfaces (see atmosphere

509correction below). Global datasets are often aggregated

510to 4-km or 9-km pixels. However, higher spatial reso-

511lution on the scale of meters can be obtained from

512some space-based platforms and from ocean color sen-

513sors placed on aircraft (Fig. 3).

514The current suite of ocean color sensors has nom-

515inally six to seven spectral bands spanning the visible

516wavelengths (400–700 nm). These bands are not spread

517uniformly across the visible spectrum, but have been
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518 selected to correspond to reflectance characteristics of

519 open ocean waters, particularly those related to phyto-

520 plankton pigment absorption features. Three bands are

521 generally found in “blue” (near 410, 440, and 490 nm),

522 one to two bands in “green” (510 or 530, 560 nm), and

523 one to two channels in the “red” (670, 680 nm). In

524 addition, channels are also incorporated in the near

525 infrared (NIR) to short-wave infrared (SWIR) for

526 purposes of atmospheric correction (see section

527 “Atmospheric Correction”). Most of the visible chan-

528 nels were selected to match absorption features of phy-

529 toplankton and other constituents. Additional

530 channels are also needed to bridge the large 100 nm

531 gap between 560 and 670 nm, where absorption fea-

532 tures are dominated by water, to better constrain back-

533 scattering in complex coastal waters [23, 24]. New

534 technology has allowed for the development of sensors

535 that span the full range of visible and near infrared

536 (NIR) spectrum or “hyperpsectral,” also referred to as

537 imaging spectrometers.

538 No single platform is ideal for addressing all of the

539 temporal and spatial variability in the oceans.

540 A constellation of ocean color imagers with comple-

541 mentary capabilities and specifications is ultimately

542 required to adequately address the diverse require-

543 ments of the coastal research and applied user commu-

544 nities. For example, the Hyperspectral Imager for the

545 Coastal Ocean (HICO) was recently installed on the

546 International Space Station for the study of the coastal

547 ocean and adjacent lands. This imaging spectrometer is

548 intended to provide hyperspectral imagery at 100-m

549 resolution sampling at different angles and times of the

550 day for selected regions. Sensors are also being consid-

551 ered for placement on geostationary satellites, similar

552 to the international constellation of meteorological

553 satellites. Such sensors would look at the same regional

554 location on earth for extended periods of time and be

555 able to provide better temporal resolution of ocean

556 processes and episodic hazards. Regional efforts such

557 as the Geostationary Ocean Color Imager (GOCI) on

558 the COMS-1 platform from South Korea are already

559 planned for launch. In addition, higher spatial and

560 spectral resolution polar orbiting sensors are proposed

561 to address questions related to seasonal variability in

562 global coastal habitats and polar ice cover.

563 Portable sensors flown on aircraft or unmanned

564 aerial vehicles (UAV’s) provide a critical sampling

565niche distinct from satellite-borne sensors that is par-

566ticularly well suited for coastal applications and ice

567research (Fig. 3a) [25]. Airborne sensors can sample

568at finer spatial scales (meters), can operate under

569clouds and with nearly unlimited repeat coverage, and

570are effective platforms for high-resolution active sen-

571sors (e.g., LIDAR). Flight lines and scanning geome-

572tries can also be oriented to avoid sun glint and their

573range can be greatly expanded by launching from ships.

574The technology required to build portable sensors for

575coastal applications is developing with wide field of

576views, minimum polarization dependence, high

577response uniformity, and optimized signal-to-noise

578ratio for low-light channels [26, 27]. These sensors

579are becoming more popular for use in the environmen-

580tal management of coral reefs, seagrasses, kelps, and

581other coastal targets, and have the potential to monitor

582episodic events such as harmful algal blooms and run-

583off and flooding from storms.

584Ocean color sensors in space have traditionally been

585“whisk broom” in design where a single detector col-

586lects data one pixel at a time as the telescope rotates to

587build up pixels along a scan line. Some satellites and

588most of the suborbital sensors are “pushbroom” where

589the entire scan line is imaged synoptically by a line of

590sensors arranged perpendicularly to the flight direc-

591tion. In order to achieve high-quality data that can

592track climatological trends in ocean color, sensors are

593required to have very high radiometric accuracy and

594stability. Detectors are calibrated pre- and post-launch

595and degradation over time is carefully quantified with

596vicarious calibrations from field measurements and

597ideally lunar imaging. Periodic reprocessing of the

598satellite data is considered critical to obtaining

599high-quality datasets and continuity over multiple

600missions [5, 28].

601Atmospheric Correction

602One of the most challenging aspects of ocean color

603remote sensing is successfully removing the atmo-

604spheric signal from the water column signal. Aerosols

605and gas molecules are the primary contributors to the

606radiance measured at the top of the atmosphere.

607Approximately 80–85% of the radiance measured at

608the sensor is the result of Rayleigh scattering by mole-

609cules in the atmosphere that are small relative to the
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610 wavelength of light. Photons reaching the sensor (Lu)

611 are a combination of those scattered by the atmosphere

612 (Lp), reflected at the air-water interface (Lr), known as

613 specular reflection, or have been backscattered from

614 within the water column, dubbed water leaving radi-

615 ance, or Lw (Fig. 4). The water-leaving radiance, used

616 for most ocean color applications, is only a small por-

617 tion of the signal retrieved at a satellite and must be

618 differentiated from the photons scattered within the

619 atmosphere and specularly from the sea surface in

620 a process called “atmospheric correction.”

621 Rayleigh scattering, which decreases with wave-

622 length (l) following l�4, can be estimated using

623 a single-scattering radiative transfer equation using

624 the atmospheric pressure and appropriate viewing

625 geometry [29]. An additional 0–10% of the radiance

626 signal is due to aerosols (i.e., haze, dust, and pollution),

627 particles with sizes comparable to the wavelength

628 of light which absorb and scatter as a complex function

629 of their type, size, and concentration. The type and

630 concentrations of aerosols overlying the ocean are

631 quite variable in space and time, particularly in coastal

632 regions subject to urban pollution and terrestrial

633 dust [30].

634 Atmospheric correction of aerosols remains

635 a challenge for accurately deriving water-leaving radi-

636 ance from satellites and aircraft. Approaches generally

637 focus on channels in the NIR and even in the short

638 wave infrared (SWIR) [29, 31, 32]. Because water

639 absorbs so heavily in the infrared, very few photons

640 are reflected out of water in this part of the electromag-

641 netic spectrum and the signal is dominated by reflec-

642 tion from atmospheric gases and aerosols. Various

643 types of models are used, including coupled models

644 and multi-scattering models, to infer the contribution

645 of aerosol reflectance in the visible portion of the

646 spectrum from the infrared. Aerosol reflectance is not

647 spectrally flat, but varies with wavelength, and at least

648 two channels are necessary to determine the spectral

649 shape of aerosol reflectance and extrapolate from the

650 NIR to visible wavelengths [29, 33].

651 Dust, particularly from desert storms, can also

652 impact the optical properties of the atmosphere and

653 most atmospheric correction algorithms for ocean

654 color sensors are not capable of handling absorbing

655 mineral dust (i.e., colored dust) [34]. For example,

656 airborne plumes of Saharan dust are observable all

657year on satellite images over the Tropical Atlantic and

658may be increasing in areas like the Mediterranean Sea

659[35]. If colored dusts are not properly corrected for in

660the atmospheric correction schemes, then the color of

661the ocean is not properly estimated resulting in errors

662in chlorophyll and other biogeochemical properties

663retrieved from the satellite data [36]. In addition to

664its radiative impact, it has been suggested that this

665mineral dust has a substantial influence on the marine

666productivity and may also carry pollutants to the

667oceans [37, 38].

668Whitecaps breaking on the sea surface must also be

669corrected from derivations of water-leaving radiance.

670Whitecap reflectance is often modeled using an empir-

671ical cubic relationship to wind speed and an approxi-

672mate reflectance value for an individual whitecap [39],

673but such models often overcorrected the imagery, and

674a fixed whitecap correction is often applied when wind

675speeds exceed a threshold (e.g., 8 m s�1 for SeaWiFS).

676At high winds, some of the signal attributable to white-

677caps is removed by the aerosol corrections.

678Levels of Processing

679Standards for ocean color data processing, developed at

680US National Aeronautics and Space Administration

681(NASA) for the SeaWiFS mission [40], are widely

682followed by the international community of

683ocean color users and involve four levels of processing Au2

684(Table 1).

685Ocean Color Algorithms

686This section presents the classification of the global

687ocean into two optical classes: Case 1 and Case 2 and

688then proceeds to present the general approaches or

689algorithm for two of the main products from ocean

690color imagery, chlorophyll and primary productivity,

691for Case 1 waters and to describe the semi-analytical

692algorithms which can are used for both Case 1 and

693Case 2 waters.

694Optical Classification of Aquatic Systems

695Ocean waters have long been classified based on their

696color properties [41]. A classification system intro-

697duced in 1977 differentiates phytoplankton-dominated

698waters from those where inorganic particles are
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699 dominant, known as Case 1 and Case 2, respectively

700 [42]. These cases have evolved from their original

701 forms into the categories used today: Case 1 waters

702 are those waters where optical properties are deter-

703 mined primarily by phytoplankton and related colored

704 dissolved organic matter (CDOM) and detritus degra-

705 dation products; Case 2 waters are waters where optical

706 properties are significantly influenced by other constit-

707 uents such as mineral particles, CDOM, or

708 microbubbles that do not covary with the phytoplank-

709 ton concentration [8, 43]. In today’s world, approxi-

710 mately 97% of the surface ocean falls toward the

711 optically simple, deep water, Case 1 classification.

712 When inorganic, organic, particulate, and dissolved

713 material all vary independently of one another, such

714 as in coastal ecosystems with considerable riverine

715 influence, bottom resuspension, or optically shallow

716 regions, the system falls toward the Case 2 classifica-

717 tion, also called “optically complex.”

718 This binary classification scheme has been prevalent

719 in bio-optical modeling of ocean waters and develop-

720 ment of ocean color algorithms. However, many

721 problems exist with use of such simplified schemes in

722 modeling natural systems. For example, there is no

723 sharp dividing line between the cases and each investi-

724 gation tends to use as different criteria for defining

725 Case 1 and Case 2. Commonly the two cases are defined

726 by the relationship between chlorophyll and remote

727 sensing reflectance or scattering. Even in the global

728 ocean considered to be Case 1, CDOM concentrations

729 do not covary with the instantaneous chlorophyll con-

730 centration [44], but can vary from 30% to 60% of the

731 total non-water light absorption [45] and result from

732 differences in water mass ventilation, water column

733 oxidative remineralization, and photobleaching [46].

734 In optically shallow waters, in addition to the water

735 column and its constituents (i.e., dissolved and partic-

736 ulate material), the bottom contributes to the water

737 leaving radiance in a way that depends on the bottom

738 composition and roughness. Periodic measurements of

739 bottom types using passive remote sensing in coastal

740 systems are valuable for describing and monitoring

741 habitats [47]. The magnitude and spectral quality of

742 light reflected off of the bottom material can allow

743 separation of bottom reflectance from the water col-

744 umn signal, where different bottom types will have

745 a different effect on reflectance. Shallow, clear water

746will yield the most information about bottom material,

747more readily allowing spectral discrimination of

748bottom type. However, as depth and the diffuse atten-

749uation coefficient, Kd, increase, the bottom signal

750becomes difficult to differentiate.

751Empirical Chlorophyll Algorithms

752Standard calculation of chlorophyll from ocean color

753imagery involves an empirical relationship developed

754from field observations collected throughout the global

755ocean [10]. Algorithms are typically not developed

756from the remotely sensing imagery itself, because this

757would incorporate any biases in calibration and atmo-

758spheric correction procedures used to derive reflec-

759tance, as well as any spatial inhomogeneity in

760parameters over pixel scales, and would require new

761algorithms for every new calibration and reprocessing,

762as well as launch of new sensor. Empirical solutions are

763used because an analytical solution to the problem

764requires an assessment of the entire radiance distribu-

765tion and depth derivative and such measurements are

766not possible with remote sensing [48]. Only the

767upward flux incident upon the water-air interface at

768angles less than 48�, the angle at which complete inter-

769nal reflection occurs, is measurable from above the sea

770surface [6] and generally only the flux emitted in

771a single viewing angle is remotely sensed.

772The current empirical algorithms use the shift in

773ocean color from “blue” at low Chl, where Rrs peaks at

774400 nm, to “green” at high chlorophyll, where Rrs peaks

775at 555 nm (Fig. 5a). Empirical ocean color algorithms

776have been applied to the vast majority of the global

777ocean considered Case 1 and use multiple ocean color

778bands typically log-transformed and in a ratio formu-

779lation to minimize problems with atmospheric correc-

780tion and differential scattering in the ocean. The

781coefficients for the algorithms are regularly adjusted

782to account for different sets of wavebands in various

783sensors and as new field data becomes available

784(Table 2). The OC3M algorithm developed for

785MODIS, for example, uses a 4th order polynomial

786derived from a large global dataset of field measure-

787ments of chlorophyll and Rrs. It uses a logarithmic ratio

788of blue light (either 443 and 488 nm depending on

789which is greater) to green light (555 nm) and follows

790an inverse relationship such that low Chl is retrieved or
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791 high ratios when the ocean color is blue and high Chl

792 whenmore green light is reflected (Fig. 5b). These types

793 of algorithms tend to work best at lower Chl

794 (<1 mg m�3), found in most of the world ocean,

795 where the algorithm has a flatter slope [49].

796 For much of the open ocean where chlorophyll

797 concentrations are low, the empirical algorithms work

798 well and relative error is estimated to under 35% [50].

799 However, empirical derivations of chlorophyll in Case 1

800 waters can be in error by a factor of 5 or more, partic-

801 ularly at higher Chl [49]. Such variability is due to

802 differences in absorption and backscattering properties

803 of phytoplankton and related concentrations of colored

804 dissolved organic matter (CDOM) and minerals. The

805 empirical algorithms have built-in assumptions that

806 follow the basic precept of biological oceanography;

807 i.e., oligotrophic regions with low phytoplankton bio-

808 mass are populated with small phytoplankton while

809 more productive regions contain larger bloom-

810 forming phytoplankton. With a changing world

811 ocean, phytoplankton composition may shift in

812 response to altered environmental forcing and

813 CDOM and mineral concentrations may become

814 uncoupled from phytoplankton stocks creating further

815 uncertainty and error in the empirical approaches [49].

816 The empirical approach is not widely applicable in

817 Case 2 waters, generally found near the coasts. Such

818 waters are influenced by freshwater plumes with

819 CDOM andminerals that significantly impact the opti-

820 cal properties, as well as resuspension of bottom sedi-

821 ments [51]. Phytoplankton assemblages can also be

822 diverse in coastal regimes and light absorption per

823 unit of Chl is difficult to constrain. Melting and runoff

824 of glacial sources can increase particle concentrations

825 in the nearshore and change phytoplankton assem-

826 blages. In order to use remote sensing in coastal waters,

827 semi-analytical models are employed that are able to

828 decompose the reflected color into the many absorbing

829 and scattering constituents in the water column

830 (see Section “Semi-analytical Algorithms”).

831 Primary Productivity Algorithms

832 Net primary production is a key parameter derived

833 from ocean color data that provides a measure of how

834 much carbon dioxide is taken up and incorporated into

835 ocean phytoplankton during photosynthesis. Export of

836fixed carbon to the ocean interior, while only a fraction

837of the total biomass produced, provides a long-term

838sink for atmospheric carbon dioxide [52]. While satel-

839lite-derived Chl is not a direct measure of carbon fixa-

840tion in phytoplankton, such estimates are typically

841derived from correlates of Chl and rates of carbon

842fixation [53]. Net primary productivity varies with

843phytoplankton species assemblages and their physio-

844logical state related to light, temperature, nutrients,

845and other environmental factors.

846A variety of formulations have been developed for

847ocean color remote sensing and parameterized for the

848global ocean or specific regions. Models are generally

849restricted to parameters that can also be globally

850derived from remote sensing imagery, such as sea sur-

851face temperature and photosynthetically available radi-

852ation (PAR). Moving from a standing stock of

853phytoplankton biomass to photosynthetic rate requires

854a time-dependent variable. Solar radiation in the form

855of PAR is commonly used in formulations to convert

856biomass to primary productivity. The physiological

857response of the measured chlorophyll to light, nutri-

858ents, temperature, and other environmental variables

859must also be incorporated in the model. Primary pro-

860ductivity models can be differentiated by the degree of

861explicit resolution in depth and irradiance [53].

862Round robin experiments have been conducted to

863compare the performance of models for assessing

864global productivity from ocean color imagery, as well

865as the output from ecosystem-based general circulation

866models [1, 54]. The third such effort found that global

867average primary productivity varied by a factor of two

868between models and the global mean productivity for

869the different model groups ranged from 44 to 57 Gt

870C year�1 with an average of 50.7 Gt C year�1. The

871models diverged the most in the high-nutrient low

872chlorophyll waters of the Southern Ocean. Primary

873productivity algorithms have also been formulated

874from remote sensing estimates of the inherent optical

875properties (such as light absorption and backscatter-

876ing) directly [55, 56], without incorporating Chl and

877the associated uncertainties inherent in that parameter.

878Semi-analytical Algorithms

879The empirical algorithms used for deriving chlorophyll

880have been likened to a “black box” that provides no
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881 mechanistic understanding of ocean optics and are

882 particularly challenging to apply in a changing ocean,

883 when the water properties are different from the

884 empirical data used to develop the formulation [57].

885 Analytical solutions to deriving IOPs from water-

886 leaving radiance are not possible because the radiance

887 can only be measured from a few angles. Semi-

888 analytical algorithms (or “quasi-analytical”) are based

889 on a fundamental understanding of the propagation of

890 light in the ocean and provide a more mechanistic

891 approach to ocean color. These algorithms incorporate

892 some empirical approximations, but do not rely on

893 fixed predetermined relationships between the absorp-

894 tion and backscattering components of the water

895 column.

896 In semi-analytic models, the ocean color signal is

897 inverted to obtain estimates of the various absorbing

898 and backscattering constituents directly. Parameteriza-

899 tion of how water, phytoplankton, and dissolved and

900 detrital material inherently absorb and backscatter

901 light across the visible spectrum (i.e., their spectral

902 shape) is used in these models. The spectral reflectance

903 measured at the satellite is often inverted to retrieve the

904 amounts of each individual component contributing to

905 the absorption and backscattering of light. Such algo-

906 rithms are the primary methods for obtaining CDOM

907 distributions across the ocean surface [58]. In semi-

908 analytical models, the biogeochemical parameters,

909 such as Chl and total suspended matter, are derived

910 secondarily from the IOPs. Semi-analytical formula-

911 tions vary in terms of their architecture and statistical

912 methods employed to retrieve the inherent optical

913 properties from the remote sensing signal, and the

914 empirical parameterizations within the models [57].

915 Applications for Oceanography

916 Ocean color remote sensing is an important tool for

917 many branches of oceanography, including biological,

918 physical, and chemical oceanography. The section

919 below summarizes only some of the main applications

920 of ocean color remote sensing with the understanding

921 that the uses of ocean color are continuously

922 expanding. A recent monograph from the Interna-

923 tional Ocean Color Coordinating Group (IOCCG)

924 entitled “Why Ocean Colour?: The Societal Benefits of

925 Ocean-Colour Technology” extensively documents the

926many uses of ocean color remote sensing from scien-

927tists to environmental managers to the general public

928[7]. Web-based software has also been developed, see,

929e.g., Giovanni [59], which allows the public to freely

930map and analyze ocean color imagery over time and

931space. Figure 6 provides an example of various types of

932figures that can be easily generated from remotely

933sensed chlorophyll using that software.

934Biological Oceanography

935Apart from estimating chlorophyll and primary pro-

936ductivity, ocean color remote sensing has many biolog-

937ical applications that range from phytoplankton

938physiology to assessing distributions of migrating

939whales. Phytoplankton physiology, particularly the effi-

940ciency of light capture and utilization, has been

941modeled from the natural fluorescence signature pro-

942vided by ocean color remote sensing [60]. Even though

943the spectral resolution available in most current ocean

944color satellite is limited to six to eight available spectral

945channels [61], a variety of phytoplankton taxa and

946groups have also been distinguished from satellite

947imagery based on their unique optical properties and/

948or regional tuning of algorithms using knowledge of

949the local phytoplankton composition. Phytoplankton

950taxa can have unique sets of accessory pigments that

951differentiate them from one another and can result in

952unique absorbance spectra. In addition, phytoplankton

953can have cell walls or exterior plates comprised of

954different materials (e.g., silica, calcium carbonate)

955that can make them more or less reflective. Various

956approaches have been developed to map size classes

957(from pico- to microplankton) or major groups of

958phytoplankton in the global ocean [62]. Other algo-

959rithms have targeted particular phytoplankton taxa

960such as coccolithophores, nitrogen-fixing

961Trichodesmium [63], toxic dinoflagellates [64], and

962nuisance cyanobacteria [65].

963Satellite-derived chlorophyll and primary produc-

964tivity provide a key metric to assess marine ecosystems

965temporally on a global scale and have been used exten-

966sively to monitor conditions that impact other biolog-

967ical organisms in the sea. The relationship between

968satellite-derived chlorophyll data and organisms at

969higher trophic levels depends upon the number of

970linkages in the food web. For species like anchovies
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971 and sardines, which eat phytoplankton in their life

972 cycle, the linkage can be direct [66]; whereas, many

973 trophic levels can exist for other species and the rela-

974 tionship can be quite nonlinear [7]. The distribution,

975 movement, and migration of whales, dolphins, pinni-

976 peds, penguins, and sea turtles has been related, either

977 directly or indirectly, to remotely sensed patterns of Chl

978 (reviewed in [7]). Most fish have planktonic larval

979 stages that are strongly influenced by ocean circulation

980 and recruitment success has been found to be related to

981 the degree of timing between spawning and the sea-

982 sonal phytoplankton bloom, as observed from satellites

983 [67]. Ocean color remote sensing has also been used to

984 study invertebrates in the global ocean, such as shrimp

985 in the Newfoundland-Labrador Shelf [68] and ptero-

986 pods and pelagic mollusks in the Ross Sea [69]. Mean

987 net primary productivity, determined from ocean color

988 satellite imagery, elucidates species richness in biogeo-

989 graphical studies of cephalopods [70].

990 New techniques have also been developed to use

991 ocean color remote sensing in optically shallow water

992 systems to deduce changes in benthic habitats [71].

993 Optically shallow water occurs when the seafloor con-

994 tributes to the reflectance signal observed remotely by

995 a satellite (Fig. 7a) and is defined by a combination of

996 water clarity, water depth, and bottom composition.

997 Satellite estimates of biomass and net productivity of

998 seagrasses, kelps, and other benthic producers have

999 been conducted over regional scales [47, 72] (Fig. 7b).

1000 Ocean color imagery from aircraft can map fine-scale

1001 distributions of seagrasses, coral reefs, and other coastal

1002 habitats at local scales [73, 74]. Changes in ocean color

1003 signals over time can also be used to assess contribu-

1004 tions of coastal carbon to the global carbon cycle [75,

1005 76]. Responses of coastal regions linked to terrestrial

1006 changes can also be observed with ocean color imagery.

1007 Warming of the Eurasian landmass, for example, has

1008 led to enhanced productivity in the water column [77].

1009 Agricultural runoff from fields in Mexico was shown to

1010 stimulate large phytoplankton blooms in the Gulf of

1011 California that alter water clarity and potentially lead to

1012 anoxic conditions [78].

1013 Ocean Physics

1014 Ocean color data is well suited to the detection of

1015 convergence zones and oceanic fronts, sometimes

1016better than thermal sensors which penetrate only the

1017skin layer, or the first 10 mm, of the water column.

1018Interestingly, a sequence of ocean-color-derived chlo-

1019rophyll images may help predict the formation of

1020eddies days before they appear. The increased penetra-

1021tion of visible radiation reveals more frontal features

1022and with greater detail than those retrieved with sea

1023surface temperature data alone [79]. Likewise, upwell-

1024ing regions, which bring cold, nutrient-rich waters up

1025to the surface can be readily identified in ocean color

1026images as areas with an enhanced chlorophyll concen-

1027tration. The intensity of upwelling from year-to-year

1028can be tracked through the time series of chlorophyll

1029abundance. Chlorophyll is an effective indicator for

1030detecting anomalous activity in the oceanic environ-

1031ment. Evidence of an El Niño event beginning in

1032November of 1997, during which phytoplankton pig-

1033ment concentrations appeared anomalously low in the

1034Equatorial Upwelling Zone, was obvious in the contin-

1035uous coverage supplied by SeaWiFS. The onset of

1036restored upwelling was likewise evident with the

1037increased chlorophyll concentrations during the

1038months of June and July 1998 [80].

1039Ocean water clarity also affects the distribution of

1040shortwave heating in the water column. Both chloro-

1041phyll and CDOM concentrations have been linked to

1042changes in heating of surface waters [81, 82]. Increased

1043clarity would be expected to cool the surface and heat

1044subsurface depths as shortwave radiation penetrates

1045deeper into the water column. Recent studies show

1046that water clarity, as determined from ocean color

1047remote sensing, is an important feature in atmospheric

1048circulation (the Hadley cells), oceanic circulation

1049(Walker Circulation), and formation of mode water

1050[83]. Importantly, ocean color imagery is also critical

1051to predicting tropical cyclone activity. The presence of

1052light-absorbing constituents (like Chl and CDOM)

1053shapes the path of Pacific tropical cyclones and propa-

1054gation to higher latitudes [84].

1055Chemical Oceanography

1056A major contributor to the ocean carbon system is

1057colored dissolved organic material (CDOM),

1058a mixture of compounds produced primarily by

1059decomposition of plant matter. CDOM, when present

1060in high enough concentrations, produces a yellow or
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1061 brownish color and is highly reactive in the presence of

1062 sunlight. When CDOM undergoes photodegradation,

1063 organic compounds essential to phytoplankton and

1064 bacterial growth are released [85]. Satellite measure-

1065 ments collected using SeaWiFS, MODIS, and MERIS

1066 produce daily estimates of CDOM at 1 km resolution.

1067 High temporal resolution CDOM maps can be used to

1068 identify and track water masses at timescales close to

1069 the processes determining its distribution. CDOM

1070 dynamics plays an important role in ocean biogeo-

1071 chemistry, regulating the absorption of blue and UV

1072 radiation in the surface ocean and therefore altering the

1073 depth of the euphotic zone [58] and heating surface

1074 waters [82]. Although CDOM is difficult to analyze

1075 chemically, its distribution and abundance, identifiable

1076 using ocean color remote sensing, is highly relevant to

1077 understanding carbon cycling in the ocean.

1078 The particulate inorganic carbon (PIC) pool, cal-

1079 cium carbonate (CaCO3), contributes substantially to

1080 the ocean carbon cycle and ocean color reflectance.

1081 Calcification reduces surface carbonate, decreasing

1082 alkalinity. Organic carbon production via photosyn-

1083 thesis counterbalances this effect. Coccolithophores,

1084 haptophyte algae, are responsible for the majority of

1085 the biogenic particulate inorganic carbon production.

1086 Coccolithophores generate and shed tiny white plates

1087 of calcium carbonate called coccoliths, which are highly

1088 efficient at reflecting light, ultimately producing large

1089 turquoise patches in the ocean readily visible in ocean

1090 color imagery [86]. Ocean color remote sensing algo-

1091 rithms have been formulated for generating quantita-

1092 tive estimates of particulate inorganic carbon and

1093 calcification rates on regional and global scales [87,

1094 88]. A continued, long-term assessment of

1095 coccolithophore and particulate inorganic carbon

1096 abundance from satellite imagery will aid in under-

1097 standing the impact of ocean acidification on marine

1098 organisms reliant on carbonate for the formation of

1099 shells [89].

1100 Ocean color imagery provides the ability to expand

1101 small-scale biogeochemical studies to regional or global

1102 scales. For example, the marine inorganic carbon cycle

1103 has been shown to be not only influenced by marine

1104 plankton but also by fish that precipitate carbonates into

1105 the surface waters. Extrapolations from satellite-derived

1106 net primary productivity up several trophic levels to

1107marine fish [90] reveal that fish may contribute

11083–15% of the total oceanic carbon production [91].

1109Applications for Environmental Monitoring

1110Ocean color remote sensing plays a major role in mon-

1111itoring and sustaining the health and resilience of

1112marine ecosystems, including fisheries and endangered

1113species [40]. Ocean color products are helping to

1114address how environmental variability influences affect

1115annual recruitment of fish stock [92] and to locate and

1116manage fisheries [7]. Ocean color imagery coupled

1117with other remote sensing products such as sea surface

1118temperature is a fundamental tool in ecosystem-based

1119management of marine resources [93].

1120Ocean color remote sensing can monitor a variety

1121of acute and chronic hazards influencing the oceans

1122including: harmful algal blooms, oil spills, coastal

1123flooding, icebergs and marine debris [7].

1124A combination of ocean color, field, and meteorologi-

1125cal datasets have been critical in identifying the onset of

1126harmful algal blooms (HABs), which can produce

1127toxins and create hypoxic conditions. While toxins

1128cannot be directly observed from ocean color, the

1129onset of potential harmful blooms can be identified

1130using a chlorophyll anomaly method [94] in concert

1131with other forecasting tools such as field and meteoro-

1132logical datasets. This information can then be passed

1133on to coastal managers and state agencies to put strat-

1134egies in place to deal with an impending bloom. A long-

1135term time series of ocean color products can aid in

1136elucidating forcing and transport mechanisms of

1137these harmful blooms and help improve predictability.

1138New techniques are being developed for early detec-

1139tion, containment, and clean up of oil spills. Remote

1140sensing can be used to detect oil spills that can change

1141surface reflectance properties and the color of the ocean

1142[95]. Coarse spatial and temporal resolution, limited

1143spectral bands, cloud-cover issues and high sunlight

1144requirements have generally restricted the usefulness

1145of ocean color imagery for oil-spill detection

1146from polar orbiting satellites [96]. Moreover,

1147current processing methods may not allow data

1148availability within hours of data capture. The spatial,

1149temporal, and spectral resolution needed for oil

1150spill recovery planning requires high-resolution,
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1151 hyperspectral ocean color radiometers deployed in

1152 geostationary orbit [40].

1153 Ocean color imagery has also been used to track

1154 marine debris on the ocean surface which can entangle

1155 a variety of pelagic species, such as endangered sea

1156 turtles, seals, and whales. The nets also become

1157 ensnared on coral reefs and damage the reef structure

1158 and associated organisms that require a healthy reef

1159 ecosystem [97, 98]. Satellite ocean color data are part

1160 of the methods being developed to locate and identify

1161 potential locations of marine debris to aid their

1162 removal from these ecosystems.

1163 Ocean color imagery is also useful in monitoring

1164 water quality in inland aquatic water bodies. Nuisance

1165 algal blooms, such as cyanobacteria, cause aesthetic

1166 degradation to lakes and reservoirs resulting in surface

1167 scum, unpleasant taste and odor in drinking water

1168 (from the production of metabolites such as methyl

1169 isoborneol and geosmin), and possible adverse effects

1170 to human health from blue-green algal toxins.

1171 Predicting the locations and timing of blue-green

1172 algal bloom using traditional sampling techniques is

1173 difficult and hyperspectral remote sensing can be an

1174 important tool in such monitoring efforts [99].

1175 Future Directions

1176 Within a few decades, the ability to view the global

1177 ocean color regularly through remote sensing has rev-

1178 olutionized the perceptions about ocean processes and

1179 feedbacks to the earth’s climate. The decade of contin-

1180 uous ocean color imagery has provided a foundation

1181 for assessing change in the earth’s systems and long-

1182 term averages or “climatologies” of products, such as

1183 chlorophyll, CDOM, and PIC, have been produced to

1184 provide a baseline of ocean biogeochemistry (Fig. 8).

1185 The products obtained from ocean color are now incor-

1186 porated into all domains of oceanography, global cli-

1187 mate forecasts, military applications, and

1188 environmental monitoring across the expansive global

1189 ocean and the vulnerable coastal regions where most of

1190 the human population resides [11]. While successful,

1191 the technology and processing of ocean color remote

1192 sensing is still in its infancy in terms of monitoring the

1193 ocean from immediate to climatological timescales.

1194 The relationships between climatological forcing

1195 and biological carbon storage in the ocean are complex

1196and not readily incorporated in models. Ocean color

1197imagery can provide assessments of potential changes

1198to ocean processes including primary productivity,

1199surface heating, sediment plumes, altered food webs,

1200harmful algal blooms, changing acidity, and alterations

1201of benthic habitats in response to shifts in winds and

1202upwelling, clouds and radiative forcing, and storm

1203intensity and frequency. Recent observed changes in

1204chlorophyll, primary production, and the size of the

1205oligotrophic gyres from ocean color satellites are com-

1206pelling evidence of significant changes in the global

1207ocean. A recent study demonstrates that a time series

1208of at least 40 years in length is needed to unequivocally

1209distinguish a global warming trend from natural vari-

1210ability [6] and sustained long-term observations of

1211ocean color are in jeopardy [40].

1212In addition to sustained imagery, there is a need for

1213integrating ocean color imagery from different plat-

1214forms to monitor the oceans and aquatic habitats at

1215a variety of desired spectral, spatial, and temporal res-

1216olutions. Integration of satellite sensors with suborbital

1217platforms will allow for better assessment of vulnerable

1218marine and aquatic habitats, as well as responses to

1219hazards such as harmful algal blooms, oil spills, and

1220storms that cause coastal flooding and erosion. Active

1221sensors, such as Light Detection and Ranging (LIDAR),

1222will allow us to probe into the depths of the oceans.

1223Moreover, integrating surface ocean color measure-

1224ments with three-dimensional measurements and

1225models of the ocean will be increasingly important in

1226discerning a changing ocean [49].

1227Finally, the approaches or algorithms for

1228conducting ocean color remote sensing will be aug-

1229mented as more spectral channels become routinely

1230available and as ocean properties change. Purely statis-

1231tical or empirical models are only accurate when con-

1232ditions are similar to past conditions. When

1233considering a changing ocean, the cause of the color

1234change must be carefully assessed to separate the spec-

1235tral variability due to phytoplankton from other

1236sources of variability, such as sediments, CDOM, and

1237even atmospheric aerosols. Considerable growth is also

1238expected in approaches and technology for remote

1239sensing of coastal habitats and assessing acute and

1240chronic hazards. Comprehensive and consistent field

1241observations from ships to autonomous vehicles

1242and floats are required to assess the accuracy of
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1243 satellite-derived products, build improved algorithms,

1244 and provide better linkages between surface measure-

1245 ments made from space and the processes within the

1246 water column [49]. Future effort will also be directed at

1247 assimilation of ocean color imagery into global circu-

1248 lation and climate models. As outlined above, remote

1249 sensing of ocean color is a complex discipline requiring

1250 radiometrically accurate and calibrated sensors,

1251 advanced techniques for atmospheric correction of

1252 aerosols and dust, and approaches that can deduce

1253 the source of variability in the color signal measured

1254 by a sensor. With the many important applications of

1255 ocean color remote sensing, from climate forecasting to

1256 environmental monitoring, a consistent and coordi-

1257 nated international investment in education, research,

1258 and technology is required to maintain and advance

1259 this dynamic field.
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t1:1 Remote Sensing of Ocean Color. Table 1 Levels of data processing products from ocean color satellites

Level Processing Spatial qualities
t1:2

0 Raw data as measured directly from the spacecraft Satellite coordinates at highest spatial
resolutiont1:3

1 Converted to radiance using calibrations and sensor characterization
information

Satellite coordinates at highest spatial
resolutiont1:4

2 Atmospherically corrected to water-leaving radiance and derived
products

Satellite coordinates at highest spatial
resolutiont1:5

3 Derived products have been mapped onto a two-dimensional grid at
known spatial resolution and can be averaged over timescales (weekly,
monthly)

Regular gridded data at lower spatial
resolution (e.g., 4 or 9 km)t1:6

4 Products that have been merged or assimilated with data from other
sensors, in situ observations, or model outputs

Regular gridded data at lower spatial
resolution

t1:7

t2:1 Remote Sensing of Ocean Color. Table 2 Empirical chlorophyll algorithms for a variety of ocean color sensors

Namea Sensor

Channelsb Coefficientsct2:2

Blue Green a0c a1 a2 a3 a4
t2:3

OC4 SeaWiFS 443 > 490 > 510 555 0.366 �3.067 1.93 0.649 �1.532t2:4

OC3S SeaWiFS 443 > 490 555 0.2409 �2.4768 1.5296 0.1061 �1.1077t2:5

OC2S SeaWiFS 490 555 0.2372 �2.4541 1.7114 �0.3399 �2.788t2:6

OC3M MODIS 443 > 488 551 0.283 �2.753 1.457 0.659 �1.403t2:7

OC2M HMODIS 469 555 0.1543 �1.9764 1.0704 �0.2327 �1.1404t2:8

OC4O OCTS 443 > 490 > 520 565 0.4006 �3.1247 3.1041 �1.4179 �0.3654t2:9

OC3O OCTS 443 > 490 565 0.2836 �2.1982 1.0541 0.186 �0.717t2:10

OC2O OCTS 490 565 0.2805 �2.167 1.1789 �0.1597 �1.5591t2:11

OC3C CZCS 443 > 520 550 0.3012 �4.4988 9.0983 �9.9821 3.235
t2:12

t2:13
aName of ocean color (OC) algorithm incorporates the number of wavebands (2–4) used in the formulation and the initial for the sensor

used (S = SeaWiFS; M = MODIS; O = OCTS; C = CZCS)
bThe algorithms use a log-transformed ratio of “Blue” (443–520 nm) to “Green” (550–565 nm) remote sensing reflectance (Rrs). Whenmore

than one “Blue” channel is provided, only the channel with the highest Rrs is used. x = log10(R
Au3 rs(Blue)/Rrs(Green))

cChlorophyll a is modeled as a fourth polynomial fit to the field data such that: Chl ¼ 10^ða0þ a1�xþ a2�x2 þ a3�x3 þ a4�x4Þ
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Remote Sensing of Ocean Color. Figure 1

Absorption spectrum for different constituents in seawater

including water molecules, chromophoric dissolved

organic matter and detritus, and phytoplankton

contributions bio-optically modeled for chlorophyll

ranging from 0.1 to 10 mg m�3 [16]
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Remote Sensing of Ocean Color. Figure 2

Global maps of satellite-derived chlorophyll showing increasing levels of temporal resolution from daily to seasonal.

Imagery from MODIS Aqua satellite from 2006: (a) 17 December; (b) 11–17 December; (c) 1–31 December; (d) Autumn.

White spacing in imagery represents gaps in orbital coverage (daily image), as well as clouds and ice cover. Merging of

imagery from different sensors can provide enhanced daily coverage [100]
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Remote Sensing of Ocean Color. Figure 3

Ocean color remote sensing imagery of Monterey Bay, California, illustrates different spatial resolutions available:

(a) AVIRIS sensor flown on an aircraft [25]; (b) SeaWiFS satellite Level 2 data; (c) SeaWiFS satellite gridded to 4-km pixels;

(d) SeaWiFS satellite Level 3 9-km standard product
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Remote Sensing of Ocean Color. Figure 4

Radiance measured by a satellite includes light scattered by the atmosphere and reflected off the sea surface (i.e., glint). In

a process called “atmospheric correction,” these signals are removed leaving the “water-leaving radiance” or the light that

has penetrated the water column and been backscattered out to the satellite – a measure of ocean color
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Remote Sensing of Ocean Color. Figure 5

(a) Remote sensing reflectance (Rrs) spectra modeled for different concentrations of chlorophyll a (Chl) from 0.01 to

50 mg m�3. The color of each line represents the modeled ocean color a human observer might observe following [61].

(b) The empirical OC3M model for deriving Chl from Rrs for the MODIS Aqua sensor. The model uses the “blue” channel

with the highest Rrs value (443 or 488 nm) divided by the “green” channel at 551 nm. Each square represents the modeled

Chl for the corresponding Rrs spectra in panel A and demonstrates how the model becomes less accurate at high Chl
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Hovmoller Diagram showing Chlorophyll over Time by Longitude
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Remote Sensing of Ocean Color. Figure 6

Various times series analyses that can be conducted with standard
Au12

Level 3 chlorophyll imagery including

(a) Temporally averaged spatial distributions; (b) time series of interannual variability; (c) histograms showing the

statistical distributions; (d) Hovmoller plots presenting both spatial (x-axis) and temporal (y-axis) variability. Such plots can

be easily generated by the public with the Giovanni interface [59]
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Remote Sensing of Ocean Color. Figure 7

The Great Bahama Bank is an example of optically shallow water where the seafloor color can be observed from space.

(a) Pseudo-true color image from MODIS Aqua showing the bright Bahamas Banks with Florida, USA, to the West and

Cuba to the Southwest. White wispy clouds can obscure the ocean color. (b) Net primary productivity (mgC m�2 d�1) of

seagrass and benthic algae estimated from ocean color imagery over the Great Bahama Bank [47]
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Remote Sensing of Ocean Color. Figure 8

Global climatologies or long-term averages of products derived from the Ocean Color SeaWiFS sensor from 1998–2011.

(a) Chlorophyll a (mg m�3); (b) colored dissolved organic matter (CDOM) index; (c) particulate inorganic carbon (PIC)

(mol m�3)
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